フィボナッチ数列の数理

原 信一郎

September 13, 2022

http://blade.nagaokaut.ac.jp/~hara/class/modern-math/

01 算数から数学へ

かけ算九九

	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9
2	2	4	6	8	10	12	14	16	18
3	3	6	9	12	15	18	21	24	27
4	4	8	12	16	20	24	28	32	36
5	5	10	15	20	25	30	35	40	45
6	6	12	18	24	30	36	42	48	54
7	7	14	21	28	35	42	49	56	63
8	8	16	24	32	40	48	56	64	72
9	9	18	27	36	45	54	63	72	81

かけ算九九

	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9(0+9=9)
2	2	4	6	8	10	12	14	16	18 (1 + 8 = 9)
3	3	6	9	12	15	18	21	24	27 (2 + 7 = 9)
4	4	8	12	16	20	24	28	32	36 (3 + 6 = 9)
5	5	10	15	20	25	30	35	40	45 (4 + 5 = 9)
6	6	12	18	24	30	36	42	48	54 (5 + 4 = 9)
7	7	14	21	28	35	42	49	56	63 (6 + 3 = 9)
8	8	16	24	32	40	48	56	64	72 (7 + 2 = 9)
9	9	18	27	36	45	54	63	72	81 (8 + 1 = 9)

かけ算九九

	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	$7 (7 \times 2 - 0 = 14)$	8	9
2	2	4	6	8	10	12	$14 (4 \times 2 - 1 = 7)$	16	18
3	3	6	9	12	15	18	$21 (1 \times 2 - 2 = 0)$	24	27
4	4	8	12	16	20	24	$28 (8 \times 2 - 2 = 14)$	32	36
5	5	10	15	20	25	30	$35 (5 \times 2 - 3 = 7)$	40	45
6	6	12	18	24	30	36	$42 (2 \times 2 - 4 = 0)$	48	54
7	7	14	21	28	35	42	$49 (9 \times 2 - 4 = 14)$	56	63
8	8	16	24	32	40	48	$56 (6 \times 2 - 5 = 7)$	64	72
9	9	18	27	36	45	54	$63 (3 \times 2 - 3 = 0)$	72	81

かけ算八八

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	4	6	8	11	13	15	17
3	3	6	10	13	16	20	23	26
4	4	8	13	17	22	26	31	35
5	5	11	16	22	27	33	38	44
6	6	13	20	26	33	40	46	53
7	7	15	23	31	38	46	54	62
8	8	17	26	35	44	53	62	71

かけ算八八

	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8 (0+8=8)
2	2	4	6	8	11	13	15	17 (1+7=8)
3	3	6	10	13	16	20	23	26 (2+6=8)
4	4	8	13	17	22	26	31	35 (3+5=8)
5	5	11	16	22	27	33	38	44 (4+4=8)
6	6	13	20	26	33	40	46	53 (5+3=8)
7	7	15	23	31	38	46	54	62 (6+2=8)
8	8	17	26	35	44	53	62	71 (7+1=8)

かけ算十十

	1	2	3	4	5	6	7	8	9	Α
1	1	2	3	4	5	6	7	8	9	Α
2	2	4	6	8	Α	11	13	15	17	19
3	3	6	9	11	14	17	1A	22	25	28
4	4	8	11	15	19	22	26	2A	33	37
5	5	Α	14	19	23	28	32	37	41	46
6	6	11	17	22	28	33	39	44	4A	55
7	7	13	1A	26	32	39	45	51	58	64
8	8	15	22	2A	37	44	51	59	66	73
9	9	17	25	33	41	4A	58	66	74	82
Α	Α	19	28	37	46	55	64	73	82	91

かけ算一々

1 1

02 Fibonacci 数列

定義 1

次の2項間漸化式で定義される数列をフィボナッチ (fibonacci) 数列と言う。

$$F_{n+2} = F_{n+1} + F_n$$

ただし、 $F_0 = 0$, $F_1 = 1$ とする。

最初の方を少し計算すると、

$$F_0 = 0$$
, $F_1 = 1$, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$, $F_6 =$

8, $F_7 = 13$, $F_8 = 21$, $F_9 = 34$, $F_{10} = 55$, $F_{11} = 89$, $F_{12} =$

144, $F_{13} = 233$, $F_{14} = 377$, ...

命題 2

 $n \in \mathbb{Z}$ について、 $F_{-n} = (-1)^{n-1}F_n$

Fibonacci 数列

 $F_0 = 0$, $F_1 = 1$, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$, $F_6 = 1$ 8, $F_7 = 13$, $F_8 = 21$, $F_9 = 34$, $F_{10} = 55$, $F_{11} = 89$, $F_{12} = 60$ 144, $F_{13} = 233$, $F_{14} = 377$, $F_{15} = 610$, $F_{16} = 987$, $F_{17} =$ 1597, $F_{18} = 2584$, $F_{19} = 4181$, $F_{20} = 6765$, $F_{21} = 6765$ 10946, $F_{22} = 17711$, $F_{23} = 28657$, $F_{24} = 46368$, $F_{25} = 1000$ 75025, $F_{26} = 121393$, $F_{27} = 196418$, $F_{28} = 317811$, $F_{29} = 196418$ 514229, $F_{30} = 832040$, $F_{31} = 1346269$, $F_{32} =$ 2178309, $F_{33} = 3524578$, $F_{34} = 5702887$, $F_{35} =$ 9227465, $F_{36} = 14930352$, $F_{37} = 24157817$, $F_{38} =$ 39088169, $F_{39} = 63245986$, $F_{40} = 102334155$,

$$F_{-1} = 1$$
, $F_{-2} = -1$, $F_{-3} = 2$, $F_{-4} = -3$, $F_{-5} = 5$, $F_{-6} = -8$, $F_{-7} = 13$, $F_{-8} = -21$, $F_{-9} = 34$, $F_{-10} = -55$, $F_{-11} = 89$, $F_{-12} = -144$, $F_{-13} = 233$, $F_{-14} = -377$, $F_{-15} = 610$, $F_{-16} = -987$, $F_{-17} = 1597$, $F_{-18} = -2584$, $F_{-19} = 4181$, $F_{-20} = -6765$,

定理

定理 3 (一般項)

$$F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

定理 4 (極限)

$$\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = \frac{1+\sqrt{5}}{2} = 黄金比$$

定理 5 (加法定理)

$$F_{m+n} = F_m F_{n-1} + F_{m+1} F_n$$

定理 6

$$F_{n+1}F_{n-1} - F_n^2 = (-1)^n$$

$$F_{n-1}^2 + F_{n-1}F_n - F_n^2 = (-1)^n$$

定理 7

 F_{n+1} と F_n は互いに素。

aとbを整数とするとき、GCD(a, b) でその最大公約数を表すとする。a|b でa がb を割切ることを表す。

定理 8

- ① F_{kn} ($k \ge 1$) は F_n で割り切れる。
- \bigcirc $GCD(F_m, F_n) = F_{GCD(m,n)}$
- ③ $m \mid n \iff F_m \mid F_n \ (m \ge 2 とする)$

fibonacci 数列の級数の性質

定理 9

$$\sum_{k=1}^{n} F_{2k-1} = F_{2n}$$

$$\sum_{k=1}^{n} F_{2k} = F_{2n+1} - 1$$

03 Fibonacci数列の基本

基本的な設定

一般に、

$$x_{n+2} = x_{n+1} + x_n \cdots (\star)$$

とすると、

$$\begin{pmatrix} x_{n+1} \\ x_{n+2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_n \\ x_{n+1} \end{pmatrix}$$

である。よって、 $\boldsymbol{x}_n = \begin{pmatrix} x_n \\ x_{n+1} \end{pmatrix}$, $\mathcal{F} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ とおけば (\star) は、

$$\mathbf{x}_{n+1} = \mathcal{F}\mathbf{x}_n \cdots (*)$$

と同値である。よって、

$$\boldsymbol{x}_n = \mathcal{F}^n \boldsymbol{x}_0$$

となる。

注 1

$$\mathcal{F}^2 = \mathcal{F} + E, \mathcal{F}^{-1} = \mathcal{F} - E \text{ cb.}$$

特に、
$$F_n = \begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix}$$
とおけば、

$$\mathbf{F}_n = \mathcal{F}^n \mathbf{F}_0 = \mathcal{F}^n \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \mathcal{F}^n \mathcal{O}$$
右側

$$\mathbf{F}_{n-1} = \mathcal{F}^{n-1}\mathbf{F}_0 = \mathcal{F}^n\mathcal{F}^{-1}\mathbf{F}_0 = \mathcal{F}^n\begin{pmatrix} 1\\0 \end{pmatrix} = \mathcal{F}^n$$
の左側

なので、

$$\mathcal{F}^n = \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}$$

である。(
$$F_{-1} = 1$$
 とおく。)

定理3、定理4の証明

$$\mathcal{F} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
の固有行列は、 $tE - \mathcal{F} = \begin{pmatrix} t & -1 \\ -1 & t - 1 \end{pmatrix}$ 、固有方程
式は、 $|tE - \mathcal{F}| = t^2 - t - 1 = 0$ 。固有値は、
$$\alpha = \frac{1 + \sqrt{5}}{2}, \beta = \frac{1 - \sqrt{5}}{2},$$
 固有ベクトルは、 $\begin{pmatrix} 1 \\ \alpha \end{pmatrix}, \begin{pmatrix} 1 \\ \beta \end{pmatrix}$ である。 $(\alpha + \beta = 1, \alpha\beta = -1 \text{ に注意。})$ よって、 $P = \begin{pmatrix} 1 & 1 \\ \alpha & \beta \end{pmatrix}$ とおくと、 $\mathcal{F}P = P\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ 。 すなわち、
$$\mathcal{F} = P\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} P^{-1}$$
 である。よって、 $\mathcal{F}^n = P\begin{pmatrix} \alpha^n & 0 \\ 0 & \beta^n \end{pmatrix} P^{-1}$ 。 すなわち、 $\mathcal{F}^n = \begin{pmatrix} 1 & 1 \\ \alpha & \beta \end{pmatrix}\begin{pmatrix} \alpha^n & 0 \\ 0 & \beta^n \end{pmatrix} \frac{1}{\beta - \alpha}\begin{pmatrix} \beta & -1 \\ -\alpha & 1 \end{pmatrix} = \frac{1}{\beta - \alpha}\begin{pmatrix} \beta^{n-1} - \alpha^{n-1} & \beta^n - \alpha^n \\ \beta^n - \alpha^n & \beta^{n+1} - \alpha^{n+1} \end{pmatrix}$ 。よって、 $F_n = \frac{\beta^n - \alpha^n}{\beta - \alpha}$ 。

定理 5(加法定理) の証明

指数法則

$$\mathcal{F}^{m+n} = \mathcal{F}^m \mathcal{F}^n$$

より、

$$\begin{pmatrix} F_{m+n-1} & F_{m+n} \\ F_{m+n} & F_{m+n+1} \end{pmatrix} = \begin{pmatrix} F_{m-1} & F_m \\ F_m & F_{m+1} \end{pmatrix} \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}
= \begin{pmatrix} F_{m-1}F_{n-1} + F_mF_n & F_{m-1}F_n + F_mF_{n+1} \\ F_mF_{n-1} + F_{m+1}F_n & F_mF_n + F_{m+1}F_{n+1} \end{pmatrix}$$

である。よって、左下を見ると、

$$F_{m+n} = F_m F_{n-1} + F_{m+1} F_n$$

である。

定理 5(加法定理) の別証明

差分方程式 (漸化式) $x_{n+2} = x_{n+1} + x_n \cdots (*)$ を考える。次が成り立つ。

補題 10

- ① *(*解の一意性*)* 数列 A_n , B_n が(*) を満たし、 $A_0 = B_0$, $A_1 = B_1$ が成り立てば、すべての整数 n について、 $A_n = B_n$ が成り立つ。
- ② *(*線形方程式における解の重ね合わせの原理) k, l を定数とする。数列 A_n , B_n が (*) を満たせば、その一次結合 $C_n = kA_n + lB_n$ も (*) を満たす。

(加法定理の別証明) $f_n = F_{m+n}$, $g_n = F_m F_{n-1} + F_{m+1} F_n$ とおくと、 f_n , g_n は (*) を満たし、また $f_0 = F_m = g_0$, $f_1 = F_{m+1} = g_1$ である。よって、上の補題より、 $f_n = g_n$ がすべての n について成り立つ。

三角関数の加法定理の証明

参考までに三角関数の加法定理

 $\sin(x+a) = \sin x \cos a + \cos x \sin a$ の別証明ををあげる。微分方程式 $y'' = -y \cdots (*)$ を考える。次が成り立つ。

補題 11

- ① *(*解の一意性*)* 関数 y = a(x), y = b(x) が (*) を満たし、a(0) = b(0), a'(0) = b'(0) が成り立てば、すべての実数 x について、a(x) = b(x) が成り立つ。
- ② *(*線形方程式における解の重ね合わせの原理*) k*, *l* を定数とする。数列 y = a(s), b(x) が (*) を満たせば、その一次結合 y = ka(x) + lb(x) も (*) を満たす。

(加法定理の別証明) $f(x) = \sin(x + a)$, $g(x) = \sin x \cos a + \cos x \sin a$ とおくと、f(x), g(x) は (*) を満たし、また、 $f(0) = \sin a = g(0)$ 。また、 $f'(x) = \cos(x + a)$, $g'(x) = \cos x \cos a - \sin x \sin a$ より、 $f'(0) = \cos a = g'(0)$ である。よって、上の補題より、f(x) = g(x) がすべての x について成り立つ

定理6の証明

$$\mathcal{F} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \ \mathcal{F}^n = \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}$$

なので、

$$F_{n-1}F_{n+1} - F_n^2 = |\mathcal{F}^n| = |\mathcal{F}|^n = (-1)^n$$

定理7の証明

 $F_{n+1} = F_n + F_{n-1}$ より、 F_n と F_{n-1} 公約数は F_{n+1} と F_n 公約数 に等しい。 F_1 と F_0 公約数は 1 のみなので、すべてのn について、 F_{n+1} と F_n 公約数は 1 のみである。

ユークリッドの互除法

整数 (m, n) に対し,GCD(m, n) でその最大公約数とする。GCD(m, n) には次の性質がある。

- OCD(m, 0) = m
- ③ kを整数とすると、GCD(m, n) = GCD(m, n + km)

- **⑤** ある整数 a, b が存在して, am + bn = GCD(m, n)

ユークリッドの互差法

自然数のペア(m, n)について

$$(m, n) \rightarrow \begin{cases} (m-n, n) & m \ge n \text{ のとき} \\ (m, n-m) & m \le n \text{ のとき} \end{cases}$$

という変形を繰り返す。(m = n obstacle obstacle) ついっときはどちらの \rightarrow でもよい。)

例: $(20, 12) \rightarrow (8, 12) \rightarrow (8, 4) \rightarrow (4, 4) \rightarrow (0, 4)$

【定理】(ユークリッドの互除(差)法) この変形は、いつか必ず停止し、そのときペアの一方は0であり、もう一方はGCD(m, n)である。

【証明】GCD(m, n) = GCD(m - n, n) = GCD(m, n - m) 等より明らか。

定理8の再録

- - ① F_{kn} $(k \ge 1)$ は F_n で割り切れる。
 - \bigcirc $GCD(F_m, F_n) = F_{GCD(m, n)}$

定理8の証明

- ① 加法定理 (定理 5) $(F_{m+n} = F_m F_{n-1} + F_{m+1} F_n)$ より、 $F_{(k+1)n} = F_{kn+n} = F_{kn} F_{n-1} + F_{kn+1} F_n$ よって、 F_{kn} が F_n で割り切れるなら、 $F_{(k+1)n}$ も F_n で割り切れる。
- ② m = n + (m n) なので加法定理より、 $GCD(F_m, F_n) = GCD(F_{m-n}F_{n-1} + F_{m-n+1}F_n, F_n) = GCD(F_{m-n}F_{n-1}, F_n)$ 。 更に、定理 7 より F_{n-1} は F_n と素、よって、 $GCD(F_m, F_n) = GCD(F_{m-n}, F_n)$ 。よって、ユークリッドの互除 (差) 法の論法より、 $GCD(F_m, F_n) = GCD(F_{GCD(m, n)}, F_0) = F_{GCD(m, n)}$ 。
- ③ $m \ge 2$, $n \ge 0$ なら、 $m = n \iff F_m = F_n$ である。よって、 $m \mid n \iff m = GCD(m, n) \iff F_m = F_{GCD(m, n)} \iff F_m = GCD(F_m, F_n) \iff F_m \mid F_n$ 。

定理9の証明

$$\sum_{k=1}^{n} F_k = \sum_{k=1}^{n} (F_{k+2} - F_{k+1}) = F_{n+2} - F_2 = F_{n+2} - 1$$

$$\sum_{k=1}^{n} F_{2k-1} = \sum_{k=1}^{n} (F_{2k} - F_{2k-2}) = F_{2n} - F_0 = F_{2n}$$

$$\sum_{k=1}^{n} F_k^2 = \sum_{k=1}^{n} F_k (F_{k+1} - F_{k-1}) = \sum_{k=1}^{n} (F_{k+1} F_k - F_k F_{k-1}) = F_{n+1} F_n - F_1 F_0 = F_{n+1} F_n$$

04 群

群の公理

定義 12 (群)

集合 G 上に演算

$$\cdot : G \times G \rightarrow G, \quad (a, b) \mapsto a \cdot b$$

が定義され、更に、 1 つの要素 $e \in G$ が定められているとする。

これらが、以下の条件(群の 公理)を満たしているとき、 (G,\cdot,e) は 群であるという。

- ① 【結合則】 任意の $a, b, c \in G$ について $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- ② 【単位元の存在】任意の $a \in G$ について $a \cdot e = a, e \cdot a = a$.
- ③ 【逆元の存在】 任意の $a \in G$ について、ある $b \in G$ が存在して $a \cdot b = b \cdot a = e$.

と言う。

が成り立つならば、 可換群あるいは アーベル群である

③ 【交換則】 任意の $a, b \in G$ について $a \cdot b = b \cdot a$.

記法 1

- · を G の乗法と呼ぶ。
- e を G の単位元と呼ぶ。
- **③** *a*⋅*b* はしばしば・を省略して *ab* と書く。

命題 13 (群の性質)

G を群とするとき以下が成り立つ。

- Gの単位元は一意的である。
- ② $a \in G$ の逆元は存在すれば一意的である。

【単位元が一意であることの証明】 単位元がX, Y と二つあったとすると、X = Y である。なぜなら、

$$Y$$
 が単位元なので、 $X = XY$ X が単位元なので、 $XY = Y$

以上合わせて、

$$X = XY = Y$$

となる。

群の例

- 【加法群としての実数】(ℝ, +, 0).
- ② 【加法群としての整数】(ℤ, +, 0).
- ③ 【加法群としての整数】 $(n\mathbb{Z}, +, 0)$. ここで、 $n\mathbb{Z} = \{n \text{ の倍数全体}\}$ を表す。
- 【乗法群0でない実数】(ℝ[×], ×, 1).
- ⑤ 【乗法群0でない複素数】(C[×], ×, 1).
- **⑤** 【円】(S^1 , ?, (1,0)).
- ② 【3 次元球面】(S^3 , ?, (1,0,0,0)).
- ◎ 【正則な n 次正方行列】(GLn, ·, E) (非可換).
- ◎ 【行列式が1であるn次正方行列】(SL_n , ·, E) (非可換).
- ⑩ 【正則な対角行列群】(*D*_n(k), ·, E).

単純な群

抽象的な群

①
$$G_2 = \{a, b\}$$
 $\begin{array}{c|c} \cdot & a & b \\ \hline a & a & b \\ b & b & a \end{array}$ において、 $e = a$ としたもの。 $\begin{array}{c|c} \cdot & a & b \\ \hline a & a & b \\ \hline c & a & b \end{array}$ $\begin{array}{c|c} \cdot & a & b \\ \hline c & a & b \end{array}$

		1				
② $G_3 = \{a, b, c\}$	a	a	b	С	において、e=	$a = a \times 1 + t_2$
	b	b	c	a		$e - u \subset O \subset$
			a			
) _						

もの。

置換群

- **●** *S_n* を {1,2,3,···,*n*} からそれ自身への1:1 写像全体とする。 · は写像の合成とする。
- ② A_n を S_n の部分集合で、「偶置換」全体とする。

合同変換群 Sym(X)

Xを「図形」とするとき,X上の変換 $f: X \to X$ で,逆変換を持ち,X の任意の 2 点の距離を保つもの全体を $\mathrm{Sym}(X)$ と書き,X の合同変換群と言う。

05 群の準同型

記法 2

- {a,b,c}:順序のない集合。
 - (a,b,c):順序のある集合。
 - 論理記号 $\forall x \cdots$: 任意の x について ...。

 - $\exists x \cdots$: $bar{a} x contains x co$
 - $P \implies Q$: $P \Leftrightarrow G$:
 - $P \iff Q : P \geq Q$ は同値。
 - $P \lor Q$: $P \not\equiv b \not\equiv b$
 - $P \wedge Q$: $P \Rightarrow O_{\circ}$
 - : P cc xv $\neg P$

定義 14 (全射と単射)

 $f: X \to Y$ を写像とするとき、

- 「 $\forall y \in Y \exists x \in X f(x) = y$ 」が成り立つ時、f は 全射であるという。
- ② 「 $\forall x, x' \in X(x \neq x' \Rightarrow f(x) \neq f(x')$)」が成り立つ時、fは 単射であるという。
- ③ f が全射でかつ単射であるとき f は 全単射という。

定義 15 (準同型)

G, G' を群とし、写像 $f: G \rightarrow G'$ に対して次の条件が成り立つとき、f は G から G' への 準同型写像という。

また更に f が全単射であるとき、f は G から G' への 同型 写像であるという。群 G と G' の間に少なくとも一つ同型写像がある時、G と G' は 同型 であるといい、 $G \cong G'$ と書く。

命題 16

 $f: G \to G'$ を群の準同型とするとき以下が成り立つ。

- f(e) = e.
- 2 $f(a^{-1}) = f(a)^{-1}$.
- ③ f が同型なら f^{-1} も同型。

代数学は同型で不変な性質を研究する。

例 1

- **1** 任意の群 G について、その恒等写像 $i:G \to G$, $x \mapsto x$
- は同型。
- ② $f: \mathbb{Z}_2 \to \mathbb{Z}^{\times}, f(0) = 1, f(1) = -1$ は同型である。
- **③** $f: G_2 \to \mathbb{Z}^{\times}, f(a) = 1, f(b) = -1$ は同型である。
- **④** $f: \mathbb{Z} \to \mathbb{Z}^{\times}, f(n) = (-1)^n$ は全射準同型である。
- **⑤** $f: S_n \to \mathbb{Z}^{\times}, f(\sigma) = \sigma$ の符号 は全射準同型である。 **③** $f: GL_n(\mathbb{R}) \to \mathbb{R}^{\times}, \ f(A) = \det A \ は全射準同型。$
- $f: \mathbb{R} \to GL_2, \ f(x) = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}$ は準同型。

【問題】

 $G = \left\{1 \text{ 次分数関数} : \frac{ax+b}{cx+b} \mid a,b,c,d \in \mathbb{R}, ad-bc \neq 0\right\}$ と置

き、 $f: GL_2(\mathbb{R}) \to G$ を $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \frac{ax+b}{cx+b}$ で定義する。次の問いに答えなさい。

● Gが写像の合成を積とする群であることを示しなさい。

- ② f が準同型写像であることを示しなさい。 ③ $\alpha(x) = 1 - x$, $\beta(x) = \frac{1}{x}$ とするとき,, $\alpha\beta\alpha\beta\alpha\beta$ を求めな

定義 17 (部分群)

 (G, \cdot, e) を群、H がその部分集合で、同じ \cdot, e で群になっているとき、H を G の 部分群 という。このとき恒等写像 $j: H \to G, x \mapsto x$ は単射準同型であり、これを包含写像あるいは 埋め込み写像という。

例 2

- nℤ はℤの部分群。
- ② Z[×] は R[×] の部分群。
- \odot S_2 は S_3 の部分群。
- **●** *SL_n* は *GL_n* の部分群。

06 正規部分群

剰余集合

Gを群、 $g \in G$ 、XをGの部分群とするとき、

$$gX = \{gx \mid x \in X\}, \ Xg = \{xg \mid x \in X\}$$

と置く。

定義 18 (剰余集合)

G を群、H をその部分群とするとき、

$$G/H = \{gH \mid g \in G\}$$

と書き、これをGのHによる左剰余集合と言う。gHの形のGの部分集合を、剰余類と言う。右剰余集合も同様に定義される。

命題 19 (剰余類の性質)

Gを群、Hをその部分群とするとき、 $a, b \in G$ について以下の条件は全て同値である。

- **1** a ∈ H.
- $aH \cap bH \neq \phi$.
- $a \in bH$.

定義 20

- ① x を剰余類 $x \in G/H$ とするとき、 $a \in x$ となる a を x の代表元 という。
- ② $a_1, a_2, \dots \in G$ について、 $a_1H \cup a_2H \cup \dots = G$ かつ、各 剰余類 a_1H, a_2H, \dots に交わりがないとき、 $\{a_1, a_2, \dots\}$ を G/H の 代表系という。
- **③** 写像 $\pi: G \rightarrow G/H$, $a \mapsto aH$ を 標準射影 という。

例 3 (代表系の例)

- {0, 1} は ℤ/2ℤ の代表系である。
- 2 {0, 1, 2, 3} は ℤ/4ℤ の代表系である。

定義 21 (正規部分群)

G を環、N をその空でない部分群で、 $\forall g \in G \ gN = Ng.$

を満たす時NはGの正規部分群であるという。

例 4

- 可換群の部分群は正規部分群である。
- ② A_n は S_n の正規部分群である。
- \odot S_2 は S_3 の正規部分群でない。

定義 22 (剰余群)

Gを群、NをGの正規部分群とする。G/N に演算・と元 e を次のように定義する。(これを 剰余群という。)

- ① $x \cdot y = abN$ だだし、 $a \in x$, $b \in y$ とする。

記法3

剰余群G/Nについて、gNを[g]と書くことがある。

定理 23

G を、N をその正規部分群とするとき、 $(G/N, \cdot, e)$ は群をなす。標準射影 $\pi: G \to G/N, g \mapsto [g]$ は準同型である。

剰余群の例

① 一般に可換群
$$G \geq g \in G$$
 に対して G/gG

一般に可換併
$$G \ge g \in G$$
 に対し $C G/g$ ② $\mathbb{Z}/2\mathbb{Z} = \{[0], [1]\}$

[1] | [1] | [0]

面倒なので、次のように書く。

 $\mathbb{Z}/2\mathbb{Z} = \{0, 1\}$ 0 0 1

剰余群の例

07 群の準同型定理

定義 24 (核, 像)

 $f: G \to G'$ を群の準同型とするとき、

- **①** $\operatorname{Im} f = \{ f(x) \in G' \mid x \in G \}$ を f の 像 (image) という。
- ② Ker $f = \{x \in G \mid f(x) = e\}$ を f の 核 (kernel) という。

命題 25

- **●** Imf は G′ の部分群である。
- ② Kerf は G の正規部分群である。

群の準同型定理

定理 26 (準同型定理)

 $f: G \to G'$ を群の準同型とするとき、

$$\overline{f}: G/\mathrm{Ker}f \to \mathrm{Im}f,$$
 $[a] \mapsto f(a).$

は同型写像である。

[証明] 証明すべき事は (1) well-defined、(2) 全射、(3) 単射、(4) 準同型性である。ロ

系 27

- $S_n/A_n \cong \mathbb{Z}^{\times}$.

08 fibonacci 数列の約数

定理8の群論的(?)証明

加法定理 (定理 5)

$$F_{m+n} = F_m F_{n-1} + F_{m+1} F_n$$

を標準射影

$$\pi: \mathbb{Z} \to \mathbb{Z}/F_n\mathbb{Z}, k \mapsto [k]$$

で「落として」考えると、

$$[F_{m+n}] = [F_m F_{n-1} + F_{m+1} F_n] = [F_m F_{n-1}]$$

である。よって、 $k \ge 1$ について、

$$[F_{kn}] = [F_{(k-1)n}F_{n-1}] = [F_{(k-2)n}F_{n-1}^{2}] = \dots = [F_{n}F_{n-1}^{k-1}] = 0$$

すなわち、 \mathbb{Z} において F_{kn} は F_n で割り切れる。

09 環と体

環と体の公理

定義 28 (環と体)

集合 R上に 2つの演算

$$+: R \times R \rightarrow R, \quad (a, b) \mapsto a + b$$

 $\cdot: R \times R \rightarrow R, \quad (a, b) \mapsto a \cdot b$

が定義されているとする。更に 2 つの異なる要素 0, $1 \in R$ が定められているとする。

これらが、以下の条件(環の公理)を満たしているとき、

 $(R, +, \cdot, 0, 1)$ は 環であるという。

- ① 【結合則】 任意の $a, b, c \in R$ について (a + b) + c = a + (b + c).
- ② 【交換則】 任意の $a, b \in R$ について a+b=b+a.
- ③ 【零元の存在】任意の $a \in R$ について a + 0 = a, 0 + a = a.
- **4** 【負元の存在】 任意の $a \in R$ について、ある $b \in R$ が 存在してa+b=b+a=0.
- **⑤** 【結合則】 任意の $a, b, c \in R$ について
- $(a \cdot b) \cdot c = a \cdot (b \cdot c).$ **⑤** 【単位元の存在】任意の $a \in R$ について
 - $a \cdot 1 = a$, $1 \cdot a = a$.
- ② 【分配則】 任意の $a, b, c \in R$ について $a \cdot (b+c) = a \cdot b + a \cdot c, (a+b) \cdot c = a \cdot c + b \cdot c.$ **③** 【交換則】 任意の $a, b \in R$ について $a \cdot b = b \cdot a$.

が成り立つならば、可換環であると言う。

体

上記環の公理に加え、

① 【逆元の存在】任意の $a \in R$ について、 $a \neq 0$ ならば、ある $b \in R$ が存在して $a \cdot b = b \cdot a = 1$. が成り立つならば、体であると言う。

記法 4

- **①** +, · を R の加法、乗法と呼ぶ。
- ② 0.1 を R の零元、単位元と呼ぶ。
- a⋅b はしばしば・を省略して ab と書く。
- a ⋅ b はしはしは ⋅ を省略して ab と書く。
- ⑤ a+(-b)をa-bと書く。
- **3** a+(−b) を a−b と言く。

◎ 定義 28 の (4) の b を a の負元と言い、−a と書く。

 $oldsymbol{0}$ $a \cdot b^{-1}$ を a/b と書く。

注 2

- この文書では「環」といえば「可換環」を指すことに する。
- ② この文書では「体」といえば0≠1を仮定する。
- ③ 環 (R, +, ⋅, 0, 1) を単に R と書くことがある。

定義 29 (単元, 可逆元)

環 R の要素で逆元を持つものを 単元あるいは 可逆元 という。単元全体を R^{\times} と書く。

注3

- **①** R が体 \iff $R^{\times} = R \{0\}_{\circ}$
- ② R が体 \Rightarrow $(R[x])^{\times} = R^{\times}$ 。

命題 30 (環の性質)

R を環とするとき以下が成り立つ。

- **1** *R* の零元は一意的である。
- ② R の単位元は一意的である。
- ③ a ∈ R の負元は一意的である。
- $a \in R$ の負元は一息的である。
- $\bigcirc a \in R$ の逆元は存在すれば一意的である。

$* \times 0 = 0$

 $a \times 0 = 0$ の厳密な証明

$* \times 0 = 0$

$$a \times 0 = 0$$
 の厳密な証明

$$a \times 0 = a \times 0 + 0$$

$$= a \times 0 + (a \times 0 + (-(a \times 0)))$$

$$= (a \times 0 + a \times 0) + (-(a \times 0))$$

$$= (a \times (0 + 0) + (-(a \times 0))$$

$$= (a \times 0 + (-(a \times 0)))$$

$$= 0$$

マイナス×マイナス = プラス

$$(-a) \times (-b) = a \times b$$
 の厳密な証明

マイナス×マイナス = プラス

$$(-a) \times (-b) = a \times b$$
 の厳密な証明

$$(-a) \times (-b) = (-a) \times (-b) + 0$$

$$= (-a) \times (-b) + a \times 0$$

$$= (-a) \times (-b) + a \times ((-b) + b)$$

$$= (-a) \times (-b) + a \times (-b) + a \times b$$

$$= ((-a) + a) \times (-b) + a \times b$$

$$= 0 \times (-b) + a \times b$$

$$= 0 + a \times b$$

$$= a \times b$$

例 5 (環と体の例)

- ▲ 【整数環】(ℤ, +, ·, 0, 1).
- 【複素数体】(C, +, ·, 0, 1).
- **⑤** ($\mathbb{Z}[\sqrt{d}]$, +, ·, 0, 1)、ただし、dを整数とする。
- **⑤** 【多項式環】($R[x_1, x_2, \dots, x_n], +, \cdot, 0, 1$). ただし R を

環とする。(以下同様)

- ③ 【実数体】(ℝ, +, ⋅, 0, 1).

■ 【対角行列環】(D_n(R), +, ·, O, E).

② 【有理数体】(◎, +, ⋅, 0, 1).

Q 【R 上の正方行列環】($M_n(R)$, +, ·, Q, E) (非可換).

③
$$R_2 = \{a, b\}$$
 $\begin{array}{c|cccc} + & a & b \\ \hline a & a & b \\ b & b & a \\ \end{array}$ $\begin{array}{c|ccccc} \cdot & a & b \\ \hline a & a & a \\ b & a & b \\ \end{array}$ において、 $0 = a, \ 1 = b$ としたもの。

$b \mid b$	a		b	a	b				
$0 = a, \ 1 = b \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	も	の。							
	+	a	b	c	d		a		
	a	a	b	С	d	a	а	a	
	b	b	c	d	а	b	a	b	

ac d $c \mid c \mid d \mid a \mid b \mid c \mid a \mid c \mid a \mid c$ $d \mid d \mid a \mid b \mid c \quad d \mid a \mid d \mid c \mid b$

定義 31 (部分環)

 $(R, +, \cdot, 0, 1)$ を環、S がその部分集合で、同じ $+, \cdot, 0, 1$ で環になっているとき、S を R の 部分環 という。このと き恒等写像 $j: S \to R, x \mapsto x$ は準同型であり、これを 包含 写像あるいは 埋め込み写像という。

例 7

- ℤは ℚ の部分環。
- ② ℚはℝの部分環。
- ③ ℝは Сの部分環。
- $O_n(k)$ は $M_n(k)$ の部分環。

10 多項式環

多項式環

定義 32

R を環、x を不定元変数とするとき、R[x] で、係数をRとする多項式環を表す。

例えば、 $\mathbb{Z}[x]$ は係数が整数である多項式全体、 $\mathbb{Q}[x]$ は係数が有理数である多項式全体、 $\mathbb{R}[x]$ は係数が実数である多項式全体、 $\mathbb{C}[x]$ は係数が複素数である多項式全体を表す。

定義 33

R を環、r を R の元、S を R の部分環をとするとき、S[r] で、係数を S とする r の多項式で書ける数全体を表す。

例えば、 $\mathbb{Z}[\sqrt{2}]$ は $a+b\sqrt{2}$, $(a,b\in\mathbb{Z})$ と書ける数全体を表す。

11 準同型

環の準同型

定義 34 (準同型)

R, S を環とし、写像 $f: R \rightarrow S$ に対して次の条件が成り立つとき、f は R から S への 準同型写像という。

- **3** f(1) = 1

また更に f が全単射であるとき、f は R から S への 同型写像であるという。環 R と S の間に少なくとも一つ同型写像がある時、R と S は 同型であるといい、 $R \cong S$ と書く。

命題 35

 $f: R \to S$ を環の準同型とするとき以下が成り立つ。

- f(0) = 0.
- f(-a) = -f(a).
- ③ $f(a^{-1}) = f(a)^{-1}$, $(a^{-1}$ が存在するとき).
- **●** *f* が同型なら *f*⁻¹ も同型。

代数学は同型で不変な性質を研究する。

例 8

- ① 任意の環 R について、その恒等写像 $i: R \to R$, $x \mapsto x$ は同型。
- ② $f: R_2 \to R_4$, f(a) = a, f(b) = c は単射準同型ではない。
- ③ $g: R_4 \to R_2$, g(a) = a, g(b) = b, g(c) = a, g(d) = b は全射準同型。

12 イデアル

イデアルと剰余環

定義 36 (イデアル)

Rを環、Iをその空でない部分集合で、次の条件を満たすとき、IはRのイデアルであるという。

例 9

- ② $n\mathbb{Z} = \{n \cdot m \mid m \in \mathbb{Z}\}\$ は \mathbb{Z} のイデアル。
- ③ 可換環 R の要素 a に対して、 $\langle a \rangle$ を a の倍数全体を表す。 \mathbb{Z} においては、 $n\mathbb{Z} = \langle n \rangle$ 。

定義 37

 $s_1, s_2, \dots, s_n \in R$ に対して、

$$\langle s_1, s_2, \dots, s_n \rangle = \{r_1 s_1 + r_2 s_2 + \dots + r_n s_n \mid r_1, r_2, \dots, r_n \in R\}$$

 $\langle s_1, s_2, \dots, s_n \rangle = \{r_1 s_1 + r_2 s_2 + \dots + r_n s_n \mid r_1, r_2, \dots, r_n \in R\}$ とおき、これを s_1, s_2, \dots, s_n で 生成されたイデアルとい

とおき、これを s_1 , s_2 ,…, s_n で 生成されたイデアルという。これを、 $Rs_1 + Rs_2 + \cdots + Rs_n$ とも書く。一つの要素で生成されるイデアル $\langle a \rangle = Ra$ を 単項イデアルという。

剰余類

定義 38 (剰余類)

R を環、I をそのイデアルとするとき、 $a \in R$ に対して $[a] = \{x \in R \mid x - a \in I\}$ と書き、これを a の 剰余類と呼ぶ。また、全ての剰余類の集合 (剰余集合) を

$$R/I = \{[a] \mid a \in R\}$$

と書く。

注 4

- **①** R/I を可換群 R = (R, +, 0) の剰余集合である。
- ② $[a] = \{a + x \in R \mid x \in I\}$ であるので、これを a + I と書くことがある。
- **3** *a* ∈ [*a*] である。

例 10 (剰余集合の例)

- $\{\cdots, -1, 1, 3, 5, \cdots\}$.

命題 39 (剰余類の性質)

以下の条件は全て同値である。

- \bigcirc $a-b \in I$.
- **2** $[a] \cap [b] \neq \phi$.
- **a** ∈ [b].

定義 40

- ① x を剰余類 $x \in R/I$ とするとき、 $a \in x$ となる a を x の代表元 という。
- ② 写像 $\pi: R \to R/I$, $a \mapsto [a]$ を 標準射影 という。

剰余環

定義 41 (剰余環)

R/I に演算 +, · と元 0, 1 を次のように定義する。(これを剰余環という。)

- 2 $x \cdot y = [a \cdot b] \not \in \mathcal{E} \cup (a \in x, b \in y)$
- **③** 0 = [0] とする。
- 1 = [1] とする。

定理 42

R を環、I をイデアルとするとき、 $(R/I, +, \cdot, 0, 1)$ は環をなす。標準射影 $\pi: R \to R/I, a \mapsto [a]$ は準同型である。

剰余環の例

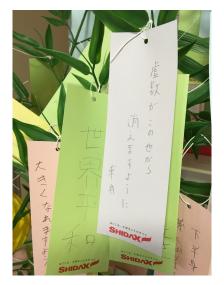
[1]

•	[0]	[1]	[2]	[3]
[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]
[2]	[0]	[2]	[0]	[2]
[3]	[0]	[3]	[2]	[1]

剰余環の例

- $\mathbb{R}[x]/\langle x^2 + 1 \rangle = \{[a + bx] \mid a, b \in \mathbb{R}\} = \{a + bi \mid a, b \in \mathbb{R}\}, \ a = a \cdot 1, \ i = [x].$ $0 = 0 + 0i, \quad 1 = 1 + 0i,$ $(a + bi) + (c + di) = (a + c) + (b + d)i, \quad (a + bi) \cdot (c + di) = (ac bd) + (ad + bc)i.$
- $(\mathbb{Z}/n\mathbb{Z})[x]/\langle x^2 x 1 \rangle = \{ax + b \mid a, \ b \in \mathbb{Z}/n\mathbb{Z}\}$

世界が平和でありますように



第3食堂前2016年7月7日

13 環の準同型定理

準同型定理

定義 43 (核,像)

 $f: R \to S$ を環の準同型とするとき、

- **1** Im $f = \{f(x) \in S \mid x \in R\}$ を f の 像 (image) という。
- ② Ker $f = \{x \in R \mid f(x) = 0\}$ を f の 核 (kernel) という。

命題 44

- \bigcirc Imf はS の部分環である。
- \bigcirc Ker f は R のイデアルである。

定理 45 (準同型定理)

 $f: R \to S$ を環の準同型とするとき、

$$\overline{f}: R/\mathrm{Ker}f \to \mathrm{Im}f,$$
 $[a] \mapsto f(a).$

は同型写像である。

[証明] 証明すべき事は (1) well-defined、(2) 全射、(3) 単射、(4) 準同型性である。□

例 11

R を環、 $a \in R$ 、R[x] を R 上の多項式環とするとき、

$$R[x]: \rightarrow R$$
 $p(x) \mapsto p(a)$

は、準同型。

例 12

- 1 $\mathbb{Z}/2\mathbb{Z} \cong R_2$. 2 $\mathbb{Z}/4\mathbb{Z} \cong R_4$.
- $\mathbb{Z}[x]/\langle x^2 2 \rangle \cong \mathbb{Z}[\sqrt{2}].$
- ③ $\mathbb{Z}[x]/\langle x^2 x 1 \rangle \cong \mathbb{Z}[\mathcal{F}]$. ただし、 $\mathbb{Z}[\mathcal{F}]$ とは整数係数 $\mathcal{O}\mathcal{F} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ の多項式で表せる行列全体。

 $i = \sqrt{-1}$ とする。 $p(x) \in \mathbb{R}[x]$ について、p(i) = 0 が成り立つ

なら、p(x) は $x^2 + 1$ で割り切れる。

14 三角関数の世界

三角関数!

定理 46 (加法定理)

$$\begin{cases} \cos(\alpha + \beta) &= \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \sin(\alpha + \beta) &= \sin \alpha \cos \beta + \cos \alpha \sin \beta \end{cases}$$

系 47

- $2 \cos 3\theta = 4\cos^3\theta 3\cos\theta, \sin 3\theta = 3\sin\theta 4\sin^3\theta$

複素数の世界では

定理 48 (オイラーの公式)

$$e^{i\theta} = \cos\theta + i\sin\theta$$

定理 49 (オイラーの等式)

$$e^{i\pi} = -1$$

定理 50 (指数の加法定理)

$$e^{i(\alpha+\beta)} = e^{i\alpha}e^{i\beta}$$

[証明] 三角関数の加法定理より、 右辺 = $(\cos \alpha + i \sin \alpha)(\cos \beta + i \sin \beta)$ = $(\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\sin \alpha \cos \beta + \cos \alpha \sin \beta)$ = $\cos(\alpha + \beta) + i \sin(\alpha + \beta)$ = 左辺。□

定理 51 (ド・モアブルの公式)

$$(e^{i\theta})^n = e^{in\theta}$$

3倍角の公式の証明:

$$\cos 3\theta + i \sin 3\theta$$

$$= (\cos \theta + i \sin \theta)^{3}$$

$$= \cos^{3} \theta + 3 \cos^{2} \theta \cdot i \sin \theta + 3 \cos \theta \cdot (-\sin^{2} \theta) + -i \sin^{3} \theta$$

$$= (\cos^{3} \theta - 3 \cos \theta \sin^{2} \theta) + i(3 \cos^{2} \theta \sin \theta - \sin^{3} \theta)$$

よって、
$$\cos 3\theta = \cos^3 \theta - 3\cos \theta \sin^2 \theta, \quad \sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta_\circ$$
また、1 + \cos \theta + \cos 2\theta + \cos 3\theta + i(\sin \theta + \sin 2\theta + \sin 3\theta) =
$$1 + e^{i\theta} + e^{2i\theta} + e^{3i\theta} = 1 + e^{i\theta} + (e^{i\theta})^2 + (e^{i\theta})^3 = \frac{1 - e^{4i\theta}}{1 - e^{i\theta}}$$

三角関数とは

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

$$De^{ix} = ie^{ix}$$
$$De^{zx} = ze^{zx}$$

(参考) オイラー・原の公式

$$c_{n+2} = -c_n$$
, $c_1 = 0$, $c_2 = -1$
 $s_{n+2} = -s_n$, $s_1 = 1$, $s_2 = 0$

つまり、

n	0	1	2	3	4	5	6	7	8	• • •
c_n	1	0	-1	0	1	0	-1	0	1	
S_n	0	1	0	-1	0	1	0	-1	0	• • •

となる、 c_n , s_n を i^n と $(-i)^n$ を用いて表すと…

$$c_n = \frac{i^n + (-i)^n}{2}, \quad s_n = \frac{i^n - (-i)^n}{2i}$$

$$i^n = c_n + i s_n$$
 (オイラー・原の公式)

動機

三角関数の公式はたくさんある。 が、オイラーの公式で統一的に扱 えるようになった。

動機

フィボナッチ数列も成仏させたい!

数列

15 代数的な枠組みで見た fibonacci

代数的な枠組みで見た fibonacci 数列

定義 52

$$\mathbb{F} = \mathbb{Z}[x]/\langle x^2 - x - 1 \rangle$$
, $\mathbb{F}_0 = \mathbb{Q}[x]/\langle x^2 - x - 1 \rangle$ と置く。

$$\mathcal{F} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 とおくと、 $\mathcal{F}^n = \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}$ である。また、 $\mathcal{F}^2 - \mathcal{F} - E = 0$ が成り立つ。よって、

$$F_n$$
の性質を調べること \Leftrightarrow $\mathcal{F} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ の性質を調べること \Leftrightarrow \mathbb{F} の性質を調べること

$$\mathcal{F}' = \begin{pmatrix} 3 & -1 \\ 7 & -2 \end{pmatrix}$$
 と置くと、やはり、 $\mathcal{F}'^2 - \mathcal{F}' - E = 0$ を満たしているので、 \mathbb{F} は、 F_n の情報を 100% 含んでいるわけではない…ようにも思えるが、そうでもない (定理 54 参照)。

 \mathbb{F} には次のような性質がある。証明は $\sqrt{5}$ が無理数であることを利用する。

命題 53

- 全ての \mathbb{F} の要素は、ある $a, b \in \mathbb{Z}$ でax + bと表される。

 - **③** $s, t \in \mathbb{F}, s \cdot t = 0 \Leftrightarrow s = 0$ または t = 0

 \mathbb{F} を \mathbb{F}_0 とし、 \mathbb{Z} を \mathbb{Q} としても同様。

次の定理は F_n にある種の普遍性があることを示している。

定理 54

 \mathbb{F} において、 $x^n = F_n x + F_{n-1}$ である。

[証明]
$$n = 0$$
 のとき正しい。 $x(xF_n + F_{n-1}) = x^2F_n + xF_{n-1} = (x+1)F_n + xF_{n-1} = (F_n + F_{n-1})x + F_n = F_{n+1}x + F_n$ より。ロ

定理 5(加法定理) の再証明

加法定理 (定理 5) $F_{m+n} = F_{m+1}F_n + F_mF_{n-1}$ の証明 $x^{m+n} = x^m x^n$ に前定理を代入して

$$F_{m+n}x + F_{m+n-1} = (F_mx + F_{m-1})(F_nx + F_{n-1})$$

$$= F_mF_nx^2 + (F_{m-1}F_n + F_mF_{n-1})x + F_{m-1}F_{n-1}$$

$$= F_mF_n(x+1) + (F_{m-1}F_n + F_mF_{n-1})x + F_{m-1}F_{n-1}$$

$$= (F_mF_n + F_{m-1}F_n + F_mF_{n-1})x + F_mF_n + F_{m-1}F_{n-1}$$

よって、

$$F_{m+n} = F_m F_n + F_{m-1} F_n + F_m F_{n-1}$$

$$F_{m+n-1} = F_m F_n + F_{m-1} F_{n-1}$$

である。これから加法定理はすぐ得られる。

注 5

この証明は、三角関数の加法定理 (定理 46)

$$\begin{cases} \cos(\alpha + \beta) &= \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \sin(\alpha + \beta) &= \sin \alpha \cos \beta + \cos \alpha \sin \beta \end{cases}$$

がオイラーの公式

$$e^{i\theta} = \cos\theta + i\sin\theta$$

と、指数定理

$$e^{i(\alpha+\beta)}=e^{i\alpha}e^{i\beta}$$

から、次のように証明されることを想起させる。

左辺 =
$$\cos(\alpha + \beta) + i\sin(\alpha + \beta)$$

右辺 =
$$(\cos \alpha + i \sin \alpha)(\cos \beta + i \sin \beta)$$

= $(\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\sin \alpha \cos \beta + \cos \alpha \sin \beta)$

定理8の再証明

標準射影 $\pi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}, k \mapsto [k]$ によって導かれる標準射影

$$\pi: \quad \mathbb{F} = \mathbb{Z}[x]/(x^2 - x - 1) \to (\mathbb{Z}/n\mathbb{Z})[x]/(x^2 - x - 1)$$
$$ax + b \mapsto [a]x + [b]$$

を考える。(今後 [a]x + [b] も ax + b と書くことにする。) $x^n = F_{nx} + F_{n-1} \in \mathbb{F}$ より $x^n = F_{n-1} \in (\mathbb{Z}/F_n\mathbb{Z})[x]/(x^2 - x - 1)$ である。よって、 $F_{kn}x + F_{kn-1} = x^{kn} = (x^n)^k = F_{n-1}{}^k$ 。従って $\mathbb{Z}/F_n\mathbb{Z}$ において、

$$F_{kn} = 0, \quad F_{kn-1} = F_{n-1}{}^{k}$$

である。よって \mathbb{Z} において、 F_{kn} は F_n で割り切れる。

定理9の再証明

(1)
$$F_k x + F_{k-1} = x^k$$
 より、
$$\sum_{k=1}^n F_k x + \sum_{k=1}^{n-1} F_k = \sum_{k=1}^n x^k = \sum_{k=1}^n (x^{k+2} - x^{k+1}) = x^{n+2} - x^2 = F_{n+2} x + F_{n+1} - (x+1) = (F_{n+2} - 1)x + F_{n+1} - 1$$
 よって、
$$\sum_{k=1}^n F_k = F_{n+2} - 1$$
 である。

(2), (3)
$$F_{2k}x + F_{2k-1} = x^{2k}$$
 より、 $\sum_{k=1}^{n} F_{2k}x + \sum_{k=1}^{n} F_{2k-1} = \sum_{k=1}^{n} x^{2k} = \sum_{k=1}^{n} (x^{2k+1} - x^{2k-1}) = x^{2n+1} - x = (F_{2n+1} - 1)x + F_{2n}$ よって、 $\sum_{k=1}^{n} F_{2k} = F_{2n+1} - 1$, $\sum_{k=1}^{n} F_{2k-1} = F_{2n}$ である。

⊮ について更にいくつかの事

補題 55

 $a, b \in \mathbb{Z}(b \otimes b) \in \mathbb{Z}(b$

【証明】 $-a^2 + ab + b^2 = 0$ ならば、 $(2b + a)^2 = 5a^2$ だが、5 は 平方数でない。

命題 56

F において、 $(ax + b)(-ax + a + b) = -a^2 + ab + b^2$

命題 57

$$\frac{1}{ax+b} = \frac{-ax+a+b}{-a^2+ab+b^2}$$

系 58

Fo は体である。

系 59

$$\frac{1}{x} = x - 1, \quad \frac{1}{x - 1} = x$$

系 60

$$\sqrt{5} = \pm (2x - 1)$$

直積と直和

定義 61

 G_1 , G_2 を群とするとき、

•
$$G = G_1 \times G_2 = \{(g_1, g_2) | g_1 \in G_1, g_2 \in G_2\}$$

•
$$(g_1, g_2) \cdot (g'_1, g'_2) = (g_1 \cdot g'_1, g_2 \cdot g'_2)$$

•
$$e = (e, e)$$

と定義すると、G は群になる。G を単に $G_1 \times G_2$ と書き、 G_1 と G_2 の直積という。 G_1 , G_2 がアーベル群であるとき、G を $G_1 \oplus G_2$ 、e を 0 と書き、 G_1 と G_2 の直和と言う。

例 13

$$\mathbb{Z}/6\mathbb{Z}\cong\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/3\mathbb{Z}$$
 である。次が互いに逆準同型を与えるから。
$$\phi:\mathbb{Z}/6\mathbb{Z} \ \to \ \mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/3\mathbb{Z}$$

$$[x] \ \mapsto \ ([x],[x])$$

$$\psi:\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/3\mathbb{Z} \ \to \ \mathbb{Z}/6\mathbb{Z}$$

 $([x], [y]) \mapsto [3x + 2y]$

ℙについて更にいくつかの事(その2)

 $\mathbb{Z}{a} = \{na \mid n \in \mathbb{Z}\}$ と書くことにする。

定理 62

$$\mathbb{F} \cong \mathbb{Z}\{x\} \oplus \mathbb{Z}\{1\} \cong \mathbb{Z}\{x\} \oplus \mathbb{Z}\{1-x\}$$

定理 63

$$\tau : \mathbb{F} \to \mathbb{F}$$
$$x \mapsto 1 - x$$

で定義される τ は環の同型を与える。(x と 1 - x は「兄弟」である。)

【証明】 $f: \mathbb{Z}[x] \to \mathbb{F}$ を f(x) = 1 - x で定義する。 Ker $f = < x^2 - x - 1 >$ となるので、準同型定理より証明される。

ℙ について更にいくつかの事(その3)

命題 64

- $(1-x)^n = F_n(1-x) + F_{n-1} = -F_nx + F_{n+1}$
- ③ $a_n = x^n$, $(1-x)^n$ は、漸化式 $a_{n+2} = a_{n+1} + a_n$ を満たす。

命題 65

$$x(1-x) = -1, \ x^n(1-x)^n = (-1)^n$$

定理 66

$$F_n = \frac{1}{2x - 1} (x^n - (1 - x)^n) = \frac{2x - 1}{5} (x^n - (1 - x)^n)$$

『 について更にいくつかの事(その4)

定理 67

- 2 $x^{2n+1} = (F_{n+1}^2 + F_n^2)x + 2F_{n+1}F_n F_n^2$

定理 68

$$\sum_{k=0}^{n} x^{2k} = x^{2n+1} - x + 1 = (F_{2n+1} - 1)x + F_{2n} + 1$$

Fについて更にいくつかの事(その5)

定理 69

tの形式的冪級数として、次が成り立つ。

$$F_1 + F_2 t + F_3 t^2 + F_4 t^4 + \dots = \frac{1}{1 - t - t^2}$$

Fibonacci 数列について補足

定理 70

$$P_{n+2}^2 - F_n^2 = F_{2n+2}$$

$$\sum_{k=1}^{n} F_k^2 = F_{n+1} F_n = \frac{F_{2n+1} - F_n^2}{2}$$

$$\sum_{k=1}^{n} F_k F_{k+1} = F_{n+1}^2 + \frac{1 - (-1)^n}{2} = \frac{F_{n+1}^2 + F_n^2 - 1}{2} = F_{2n+1}^2 - 1$$

(*) 両辺とも F_n と F_{n-1} の 3 次式で書けるので、比較は易しい。

16 Lucas 数列

リュカ数列

定義 71

次の2項間漸化式で定義される数列をリュカ (Lucas) 数列と言う。

$$G_{n+2} = G_{n+1} + G_n$$

ただし、 $G_0 = 2$, $G_1 = 1$ とする。

最初の方を少し計算すると、

$$G_0 = 2$$
, $G_1 = 1$, $G_2 = 3$, $G_3 = 4$, $G_4 = 7$, $G_5 = 11$, ...

命題 72

$$n \in \mathbb{Z}$$
 について、 $G_{-n} = (-1)^n G_n$

Lucas 数列

 $G_0 = 2$, $G_1 = 1$, $G_2 = 3$, $G_3 = 4$, $G_4 = 7$, $G_5 = 11$, $G_6 = 1$ 18, $G_7 = 29$, $G_8 = 47$, $G_9 = 76$, $G_{10} = 123$, $G_{11} = 199$, $G_{12} = 199$ 322, $G_{13} = 521$, $G_{14} = 843$, $G_{15} = 1364$, $G_{16} = 2207$, $G_{17} = 1364$ 3571, $G_{18} = 5778$, $G_{19} = 9349$, $G_{20} = 15127$, $G_{21} = 15127$ 24476, $G_{22} = 39603$, $G_{23} = 64079$, $G_{24} = 103682$, $G_{25} =$ 167761, $G_{26} = 271443$, $G_{27} = 439204$, $G_{28} = 710647$, $G_{29} =$ 1149851, $G_{30} = 1860498$, $G_{31} = 3010349$, $G_{32} =$ 4870847, $G_{33} = 7881196$, $G_{34} = 12752043$, $G_{35} =$ 20633239, $G_{36} = 33385282$, $G_{37} = 54018521$, $G_{38} =$ 87403803, $G_{39} = 141422324$, $G_{40} = 228826127$,

 $G_{-1} = -1$, $G_{-2} = 3$, $G_{-3} = -4$, $G_{-4} = 7$, $G_{-5} = -11$, $G_{-6} = 18$, $G_{-7} = -29$, $G_{-8} = 47$, $G_{-9} = -76$, $G_{-10} = 123$, $G_{-11} = -199$, $G_{-12} = 322$, $G_{-13} = -521$, $G_{-14} = 843$, $G_{-15} = -1364$, $G_{-16} = 2207$, $G_{-17} = -3571$, $G_{-18} = 5778$, $G_{-19} = -9349$, $G_{-20} = 15127$,

様々な定理

定理 73

$$G_n = x^n + (1-x)^n$$

$$2 x^{n+1} + x^{n-1} = G_n x + G_{n-1}$$

$$F_n = \frac{1}{5}(G_{n+1} + G_{n-1})$$

⑤
$$G_{m+n} = F_m G_{n+1} + F_{m-1} G_n$$
 (加法定理)

一般定理

定理 74 (一般解)

数列 $\{a_n\}_n$ が $a_{n+2}=a_{n+1}+a_n$ を満たすとき、次が成り立つ。

$$a_n = F_n a_1 + F_{n-1} a_0$$

定理 75 (一般加法定理 1)。

数列 $\{a_n\}_n$ が $a_{n+2} = a_{n+1} + a_n$ を満たすとき、次が成り立つ。

$$a_{m+n} = F_m a_{n+1} + F_{m-1} a_n$$

定理 76 (一般加法定理 2)

 k_1, k_2, \dots, k_t を定数とし、 $a_n = k_1 F_n + k_2 F_{n+1} + \dots + k_t F_{n+t-1}$ と置くと次が成り立つ。

$$a_{m+n} = F_m a_{n+1} + F_{m-1} a_n$$

様々な定理(その2)

定理 77

$$2F_{m+n} = F_m G_n + G_m F_n$$

$$G_{2n} = G_n^2 - 2(-1)^n$$

$$F_{n+m} + (-1)^m F_{n-m} = G_m F_n$$

$$G_{n+m} - (-1)^m G_{n-m} = 5F_m F_n$$

17 素イデアルと極大イデアル

整域

定義 78 (整域)

環 R が次の条件を満たすとき、整域という。

$$\forall a, b \in R \ a \cdot b = 0 \implies a = 0 \lor b = 0.$$

定理 79

体は整域である。

定理 80

 \mathbb{F}_0 , \mathbb{F} は整域である。

(証明は後で)

素イデアル

定義 81 (素イデアル)

R と異なるイデアル $I \subset R$ が次の条件を満たすとき、 素イデアルという。

 $\forall a, b \in R \ a \cdot b \in I \implies a \in I \lor b \in I.$

命題 82

イデアル $I \subset R$ に対してR/I が整域であるための必要十分条件はI が素イデアルであることである。

例 14

- **●** $R = \mathbb{Z}$, $I = 3\mathbb{Z}$ のとき、I は素イデアル。
- ② $R = \mathbb{Z}$, $I = 4\mathbb{Z}$ のとき、I は素イデアルでない。

極大イデアル

定義 83 (極大イデアル)

Rと異なるイデアル $I \subset R$ が次の条件を満たすとき、極大イデアルという。

 $I \subset J \subset R$ となるイデアルJはJ = IまたはJ = Rのみである。

R を環、I をそのR と異なるイデアルとする。剰余環 R/I が体であることは、I が極大イデアルであることの必要十分条件である。

[証明]

- (十分性) R/I が体であるとする。J を I より真に大きい R のイデアルとする。 $a \in J I$ をとると $a \notin I$ なので、 $[a] \neq 0$ ここで R/I が体であることから [a] の逆元[b] が存在する。[a][b] = [1] より [ab-1] = 0 ゆえに $ab-1 \in I \subset J$ 。一方 $ab \in J$ であるから、 $1 \in J$ が言える。よって J = R。
- (必要性) I が極大イデアルだと仮定する。 $I \neq R$ より R/I は $0 \neq 1$ の環である。今、 $[a] \in R/I$, $[a] \neq 0$ を任意 にとると、 $a \notin I$ より $\langle a, I \rangle = R$ 。よってある $r \in R$ と $s \in I$ で ra + s = 1 となる。このとき、 [r][a] = [1] = 1 すなわち [r] は [a] の逆元となっている。よって、R/I は、体である。

後で述べるように、素数 p に対して $p\mathbb{Z}$ は \mathbb{Z} の極大イデアルである。

定義 85

p を素数とするとき、 $\mathbb{Z}/p\mathbb{Z}$ を F_p と書き、標数 p の 素体という。

系 86

極大イデアルは素イデアルである。

181変数多項式環

1変数多項式環

今後 k は体とする。実際には $k = \mathbb{Q}$, \mathbb{R} , \mathbb{C} と思っていてよい。 $\mathbb{N} = \mathbb{Z}_{\geq 0} = \{0$ 以上の整数 $\}$ とする。

定義 87 (多項式環)

 $k[x] = \{a_m x^m + a_{m-1} x^{m-1} + \dots + a_0 \mid \forall i \ a_i \in k, \ m \in \mathbb{N}\}$ に通常の和と積を定義したものを、k上の (1 変数) 多項式環という。

定義 88

多項式 $f = a_m x^m + a_{m-1} x^{m-1} + \cdots + a_0$, $(a_m \neq 0)$ について、次のように定義する。

- deg(f) = m ··· 次数 (degree)
- $LC(f) = a_m$ ··· 先頭係数 (leading coefficient)
- $LM(f) = x^m$ ··· 先頭単項式 (leading monomial)
- LT(f) = $a_m x^m$ · · · · 先頭項 (leading term)
- $\mathbf{RT}(f) = f \mathbf{LT}(f)$ · · · · 残余 (rest term)

命題 89

- $f, g \neq 0$ について
- $\deg(fg) = \deg(f) + \deg(g).$ $2 f + g \neq 0 \implies \deg(f + g) \le \max\{\deg(f), \deg(g)\}.$
- (a) $f + g \neq 0$ $h \Rightarrow \deg(f) \neq \deg(g) \Rightarrow \deg(f + g) = \max\{\deg(f), \deg(g)\}.$

定義 90 (整除)

 $f, g \in k[x], g \neq 0$ とする。ある $q \in k[x]$ が存在して $f = g \cdot q$ となるとき g は f を 割り切るといい、g|f と書く。また、 q = f/g と書き、これを f の g による 商と言う。

補題 91

 $f, g \neq 0$ とする。

- - $\deg(g) \le \deg(f), \ h = f \frac{\mathbf{LT}(f)}{\mathbf{LT}(g)}g \Rightarrow h = 0 \lor (h \ne 0) \land \deg(f) > \deg(h).$

割り算アルゴリズム

注 6

以下の議論はk[x]で行っているが、 \mathbb{Z} でもほぼパラレルに話を進めることができる。その場合、 $\deg(f)$ に相当するのものは、|n|(絶対値) である。

定理 92 (割り算アルゴリズム)

 $f,g \in k[x],g \neq 0$ とする。 $f \circ g$ による 割り算とは次の条件を満たすものであり、以下に述べるアルゴリズムで得ることができる。

```
Input : f, g
Output : q, r
  q := 0; r := f
WHILE r != 0 AND LT(g) | LT(r) DO
  q := q + LT(r) / LT(g)
  r := r - (LT(r) / LT(g)) * g
```

また、(1), (2) を満たす q, r は一意である。

[証明] 略。口

例 16

定義 93 (商と余り)

上のアルゴリズムで求めたq, rに対し、q を 商と言い、f div g あるいは quotient(f, g) と書く。また、r を 余りあるいは 剰余と言い、f mod g あるいは remainder(f, g) と書く。

注 7

- \bigcirc $f \mapsto (f \mod g)$ は、f に関する k 上の線形写像である。

系 94

 $g|f \iff f \mod g = 0.$

[証明] ← は明らか。 ⇒ は、定理 92 の一意性より得られる。□

系 95 (因数定理)

- $(x-a)|f \iff f(a) = 0.$

系 96 (根の数)

f(x) = 0 の根の数は $\deg f$ 以下である。

定理 97 (1 変数多項式環のイデアルの性質)

k[x] の任意のイデアルは単項イデアルである。

[証明] I & k[x] の $\{0\}$ でない任意のイデアルとする。 $I - \{0\}$ の中で \deg が最小のものをh とすると、 $I = \langle h \rangle$ である。なぜなら、 $\langle h \rangle \subset I$ は明らか。 $I \subset \langle h \rangle$ は、任意の $f \in I$ について、 $r = f \mod h$ とすると、 $r \in I$ 。もし $r \neq 0$ なら、 $\deg r < \deg h$ となって $\deg h$ の最小性に矛盾。よって r = 0 がいえるから h[f]。すなわち $f \in \langle h \rangle$ 。すなわち $I \subset \langle h \rangle$ 。 \Box

定義 98 (単項イデアル整域, PID)

任意のイデアルが単項イデアルである整域を単項イデアル 整域あるいは、*PID (Principal Ideal Domain)*と言う。

19 ユークリッドの互除法

GCD

定義 99

R を環とする。f, $g \in R$ について、f, g の 最大公約数 GCD(f,g) (gratest common devisor) とは、以下の条件を満たすh のことを言う。

- **●** *h*|*f*, *h*|*g*. (*h* は, *f* と *g* の公約数である。)
- ② $\forall p (p|f, p|g \Rightarrow p|h)$. ($f \geq g$ の公約数はh の約数である。)

注8

この定義は、最大公約数の「最大」という言葉を使わないように工夫したものである。R = k[x] ならその deg が最大、 $R = \mathbb{Z}$ なら、その絶対値が最大であると言える。

ユークリッドの互除法

定理 100 (ユークリッドの互除法)

 $f, g \in k[x]$ について以下が成り立つ。

- **①** GCD(f, g) が存在して k[x] の単元を除いて一意である。
- ③ 次のアルゴリズムで GCD(f, g) を求める事ができる。

```
Input : f, g
Output : h
  h := f
  s := g
WHILE s != 0 D0
  r := remainder(h, s)
  h := s
  s := r
```

[証明] (1), (2): イデアル $\langle f, g \rangle$ は単項イデアルなので、 $\langle f, g \rangle = \langle h \rangle$ となる h が存在する。この h は f と g の GCD である。なぜなら、 $f, g \in \langle h \rangle$ より、 $h \mid f, h \mid g$ 。また、もし

h = GCD(f, g) であることが言えた。

また、h, h' が GCD なら h|h'かつ h'|h なので、h' は h の単 元倍しか違わない。

(3): 略。口

例 17

- **O** $GCD(x^4 1, x^6 1) = x^2 1.$
- ② $GCD(x^5 + 2x^3, x^4 + x^2 x) = x$.

定義 101 (素)

 $f, g \in k[x]$ が素であるとは、 $\lceil h \mid f \rangle$ かつ $h \mid g \rangle$ ならば $h \rangle$ は単元」が言える事である。すなわち、GCD(f, g) が単元であることである。これは、 $\deg GCD(f, g) = 0$ 、 $\langle f, g \rangle = k[x]$ 、 $\langle f, g \rangle \ni 1$ と同値である。

定理 102

 $f, g, h \in k[x]$ 、 $f \otimes g$ が素とするとき、以下が成り立つ。

- **●** f|h かつ g|h ならば、(fg)|h。
- ② f|(gh) ならば f|h。

[証明]

- ① 1 = af + bg となる $a, b \in k[x]$ があるので、 $h = h \cdot 1 = h(af + bg) = ahf + bhg$ ここで、hf, hg が fg で割り切れる。
- ② 同様に、h = ahf + bhg を使って示すことができる。

k[x] で、 \deg がn より小さいものと0 をあわせて、 $k[x]_{(n)}$ と書くことにする。

定理 103

 $f, g \in k[x]$ が素であるとする。 $m = \deg f, n = \deg g$ に対して、

$$\phi: k[x]_{(m)} \oplus k[x]_{(n)} \rightarrow k[x]_{(m+n)}$$
$$(u, v) \mapsto gu + fv$$

と定義すると、これはk上のベクトル空間の同型である。

[証明] 前定理 (2) より、 ϕ は単射であることがわかる。 ϕ の ソースとターゲットの次元は、どちらも $k \perp m + n$ なので、 ϕ は同型である。 \Box

注9

- この定理は、次定理の前半を証明する。
- ② af + bg = 1 となる $a, b \in k[x]$ を見つければ、 $\phi^{-1}(w) = (bw \mod f, aw \mod g)$ である。

定理 104 (拡張されたユークリッドの互除法)

 $f, g \in k[x]$ について、

$$af + bg = GCD(f, g)$$

となる a. b が

$$\begin{array}{lll} \deg a & < & \deg g - \deg GCD(f,g), \\ \deg b & < & \deg f - \deg GCD(f,g). \end{array}$$

という条件の下でただ一組存在する。 特に、f と g が素なら、

$$af + bg = 1$$

となる a, b が $\deg a < \deg g$, $\deg b < \deg f$ という条件の下でただ一組存在する。

また、a, b は以下のアルゴリズムで求める事ができる:

```
Input: f, g (!= 0)
Output: h, a, b
 h, s := f, g
 a, b, c, d = 1, 0, 0, 1
  WHILE s != 0 DO
   q := quotient(h, s)
    r := h - qs
   r0 := a - qc
    r1 := b - qd
   h, s := s, r
    a, c := c, r0
    b. d := d. r1
```

[証明] (存在) $F_i = \begin{pmatrix} F_i \\ F_{i+1} \end{pmatrix}$, $Q_i = \begin{pmatrix} 0 & 1 \\ 1 & -a_i \end{pmatrix}$ とおくと、 $F_{i+2} = F_i - q_i F_{i+1} \iff F_{i+1} = Q_i F_{i\circ} \subset \mathcal{C}$ $R_i = Q_{i-1}Q_{i-2}\cdots Q_0$ とおけば、 $F_i = R_iF_0$ 。 R_i は、 $R_0 = E$, $R_{i+1} = Q_i R_i$ で定められ、 $R_i = \begin{pmatrix} a_i & b_i \\ a_{i+1} & b_{i+1} \end{pmatrix}$ と置けて、 $a_{i+2} = a_i - q_i a_{i+1}, b_{i+2} = b_i - q_i b_{i+1}, F_{i+2} = a_i F_i + b_i F_{i+1}$ が成り 立つ。 $F_n = GCD(F_0, F_1), F_{n+1} = 0$, f $\begin{pmatrix} GCD(F_0, F_1) \\ 0 \end{pmatrix} = F_n = R_n F_0$ 。このとき、 $GCD(F_0, F_1) = a_n F_0 + b_n F_1, 0 = a_{n+1} F_0 + b_{n+1} F_1$ である。 また、 $\deg F_0 \ge \deg F_1$ を仮定して良く、このとき、 $\deg q_i = \deg F_i - \deg F_{i+1}$ 。また、帰納的に、 $\deg a_i = \deg F_1 - \deg F_{i-1} (2 \le i \le n+1) \ge$ $\deg b_i = \deg F_0 - \deg F_{i-1} (1 \le i \le n+1)$ が言えるので、i = nとすれば、次数の条件が言える。ロ

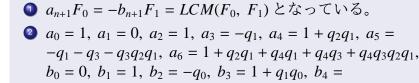
(一意性)
$$GCD(f, g) = 1$$
 としてよい。 $af + bg = a'f + b'g = 1$ なら $(a - a')f = (b' - b)g$ なので、定理 102 より、

なら (a-a')f = (b'-b)g なので、定理 102 より、

 $a - a' = a(a'f + b'g) - a'(af + bg) = (ab' - a'b)g \equiv 0 \pmod{g}$

OK な別証)

なら
$$(a-a')f=(b'-b)g$$
 なので、定理 102 より、 $f|(b'-b), g|(a-a')$ より $b'-b=a-a'=0$ 。(多項の場合も



 $-q_0-q_2-q_2q_1q_0$, $b_5 = 1+q_1q_0+q_3q_1+q_3q_2+q_3q_2q_1q_0$, $b_6 = -q_0-q_2-q_4-q_2q_1q_0-q_4q_1q_0-q_4q_3q_1-q_4q_3q_2-q_4q_3q_2q_1q_0$.

系 105

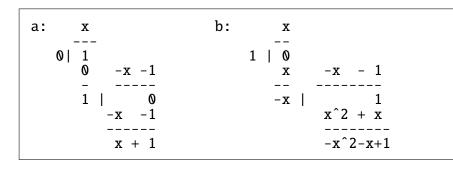
f. g が素であるとき、以下が成り立つ。

- ① $\frac{1}{fg} = \frac{b}{f} + \frac{a}{g}$ となる a, b で $\frac{b}{f}, \frac{a}{g}$ が「真分数」になるも
- のが一意に存在する。

 $\frac{b}{f}$, $\frac{a}{g}$ が「真分数」になるものが一意に存在する。

- [証明] (1), (2) 共に容易。ロ

$$f = x^4 - x^2$$
, $g = x^3 - 1$ COVC, $GCD(f, g) = x - 1 = (x + 1)f + (-x^2 - x + 1)g$.



各ステージで次が成り立っていることに注目せよ。

$$x^{4} - x^{2} = 1 \cdot (x^{4} - x^{2}) + 0 \cdot (x^{3} - 1)$$

$$x^{3} - 1 = 0 \cdot (x^{4} - x^{2}) + 1 \cdot (x^{3} - 1)$$

$$-x^{2} + x = 1 \cdot (x^{4} - x^{2}) + (-x) \cdot (x^{3} - 1)$$

$$x - 1 = (x + 1) \cdot (x^{4} - x^{2}) + (-x^{2} - x - 1) \cdot (x^{3} - 1)$$

例 18

- **o** $f = x^4 1$, $g = x^6 1$ について、 $GCD(f, g) = x^2 1 = x^2 \cdot f + 1 \cdot g$.
- $f = x^5 + 2x^3, \ g = x^4 + x^2 x \ \text{COVC},$ $GCD(f, g) = x = \frac{1}{3}(2x^2 + x + 1) \cdot f \frac{1}{3}(2x^3 + x^2 + 3x + 3) \cdot g.$

既約元

定義 106 (既約元)

 $a \in R$ について、「a の約数は自分自身か 1 のみ」のとき、すなわち「a = bc, $(b, c \in R)$ ならば b または c は単元」となるとき、a を 既約元という。

例 19

ℤにおける既約元とは素数のことである。

命題 107

R = あるいは k[x] (k は体) あるいは PID とする。 $p \in R$ が既 約元なら、 $R/\langle p \rangle$ は体である。

[証明] $[f] \in R/\langle p \rangle$, $[f] \neq 0$ とする。p|f ではないので、GCD(f, p) = 1 である。(なぜなら、h = GCD(f, p) とすると、h|p, h|f。h|p より h = 1 または h = p。h = p とすると p|f で矛盾。よって h = 1。) よって af + bp = 1 となる a, $b \in R$ が存在する。このとき [a][f] = 1 よって [a] は [f] の逆元になっている。 \Box

素元の定義

定義 108 (素元)

 $p \in R$ について「p|(ab), $(a, b \in R)$ ならば p|a または p|b」となるとき、p を 素元という。

p が素元であることと $\langle p \rangle$ が素イデアルであることは、同値である。よって、命題 **82** より、次が言える。

命題 109

 $p \in R$ が素元であることと $\langle p \rangle$ が素イデアルであることと $R/\langle p \rangle$ が整域であることは、同値である。

既約元と素元の関係

定理 110

 \mathbb{Z} あるいは k[x] あるいは PID において、既約元は素元である。

[証明] 命題 107 より、 $p \in R$ が既約元なら $R/\langle p \rangle$ は体である。よって整域である。よって、命題 109 より、p は素元である。 \Box

命題 111

整域において0でない素元は既約元である。

[証明] $p \neq 0$ を素元、p = ab とする。p|a または p|b なので p|a とすれば、pu = a となる $u \in R$ が存在する。p = pub よって p(1 - ub) = 0 よって ub = 1 すなわち b は単元である。p|b の時も同様。 \Box

注 11

上の命題より、 \mathbb{Z} あるいは k[x] あるいは PID においては既約元と0 でない素元は一致する。(実は $k[x_1, x_2, \cdots, x_n]$ においても既約元と0 でない素元は一致する。)

例 20

 $\mathbb{Z}[\sqrt{-5}] = \{a+b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$ では 2, 3, $1+\sqrt{-5}$, $1-\sqrt{-5}$ は既約元であるが、 $2\cdot 3 = (1+\sqrt{-5})(1-\sqrt{-5})$ なので、どれも素元ではない。つまり $\mathbb{Z}[\sqrt{-5}]$ は PID でない。

20 ユークリッドの互除法の応用

例 21

 $\mathbf{F}_7 = \mathbb{Z}/7\mathbb{Z}$ で 3 の逆数を求める。 拡張されたユークリッドの互除法 (整数版) より、7 + (-2)3 = 1。よって、 $3^{-1} = -2 = 5$ 。

乗法群

R を環とするとき、 R^{\times} を R の可逆元全体とするのであった。 R^{\times} はかけ算で群をなす。

$$(\mathbb{Z}/7\mathbb{Z})^{\times} = \{1, 2, 3, 4, 5, 6\}$$

٠	1	2	3	4	5	6	
1	1	2	3	4	5	6	
2	2	2 4 6 1 3 5	6	1	3	5	
3	3	6	2	5	1	4	
4	4	1	5	2	6	3	
5	5	3	1	6	4	2	
6	6	5	4	3	2	1	

これを $\mathbb{Z}/7\mathbb{Z}$ の乗法群と言う。

$$10a + b = 0 \iff 2(10a + b) = 0 \iff -a + 2b = 0$$

中国式剰余定理

定理 112

R を環とし、 $f, g \in R, af + bg = 1$ とすると、以下が成り立つ。

1

$$\pi: R/\langle fg \rangle \to R/\langle f \rangle \oplus R/\langle g \rangle$$
$$[x] \mapsto ([x], [x])$$

は加群の同型写像であり、 $\pi^{-1}([x],[y]) = [bgx + afy]$ である。

2

$$\phi: R/\langle fg \rangle \to R/\langle f \rangle \oplus R/\langle g \rangle$$
$$[x] \mapsto ([bx], [ax])$$

は加群の同型写像であり、 $\phi^{-1}([x],[y]) = ([gx + fy])$ である。

1 π , π^{-1} の well-definedness は明らか。 $\pi^{-1} \circ \pi([x]) = \pi^{-1}([x], [x]) = [bgx + afx] = [(bg + af)x] =$ $[x]_{\circ}$

$$\pi^{-1} \circ \pi([x]) = \pi^{-1}([x], [x]) = [bgx + afx] = [(bg + afx])$$

$$\pi \circ \pi^{-1}([x], [y]) = \pi([bgx + afy]) = ([bgx + afy])$$

 $\pi \circ \pi^{-1}([x], [y]) = \pi([bgx + afy]) = ([bgx + afy], [bgx + afy])$ $[afy] = ([(af + bg)x], [(af + bg)y]) = ([x], [y])_{\circ}$ ② ϕ , ϕ^{-1} の well-definedness は明らか。 $\phi^{-1} \circ \phi([x]) = \phi^{-1}([bx], [ax]) = [gbx + fax] =$ $[(gb+fa)x]=[x]_{\circ}$

$$\pi \circ \pi^{-1}([x], [y]) = \pi([bgx + afy]) = ([bgx + afy], [bgx + afy]) = ([(af + bg)x], [(af + bg)y]) = ([x], [y])。$$
② ϕ, ϕ^{-1} の well-definedness は明らか。
 $\phi^{-1} \circ \phi([x]) = \phi^{-1}([bx], [ax]) = [gbx + fax] = [(gb + fa)x] = [x]。$
 $\phi \circ \phi^{-1}([x], [y]) = \phi([gx + fy]) = ([b(gx + fy)], [a(gx + fy)]) = ([(af + bg)x], [(af + bg)y]) = ([x], [y])。$

中国式剰余定理

【問】17 で割った余りが 13、5 で割った余りが 4 である整数を求めなさい。

【答】拡張されたユークリッドの互除法で、 $-2 \cdot 17 + 7 \cdot 5 = 1$ を得る。定理 **112** より 17 で割った余りが x、5 で割った余りが y である自然として、

$$n = 7 \cdot 5 \cdot x + (-2) \cdot 17 \cdot y$$

が取れる。ここでは、 $n = 7 \cdot 5 \cdot 13 + (-2) \cdot 17 \cdot 4 = 319$ 。 答えは、remainder(319, 17 · 5) = 64。

中国式剰余定理(フィボナッチ数版)

【問】377 で割った余りが13、233 で割った余りが7 である整数を求めなさい。

【答】 $-144 \cdot 377 + 233 \cdot 233 = 1$ より、 377 で割った余りがx、233 で割った余りがy である自然として、

$$n = 233 \cdot 233 \cdot x + (-144) \cdot 377 \cdot y$$

が取れる。 よって、 $n=233\cdot 233\cdot 13+(-144)\cdot 377\cdot 7=325741$ 。 答えは、remainder(325741,377 · 233) = 62218。 ちなみに、 $F_{12}=144,\ F_{13}=233,\ F_{14}=377$ であるが・・・(次ページ)

フィボナッチ数とユークリッドの互除法

隣り合う2つのフィボナッチ数、 F_{n+1} , F_n は、最もユークリッドの互除法が苦手とするペアである。(除算の回数がn-1回になる。) しかし、 $F_{n-1}F_{n+1}-F_n^2=(-1)^n$ であるから、 $aF_{n+1}+bF_n=1$ となるa, bとして、 $a=(-1)^nF_{n-1}$, $b=(-1)^{n-1}F_n$ が取れる。

中国式剰余定理3項バージョン

定理 113

R を環とし、f, g, $h \in R$, agh + bfh + cfg = 1 とすると、以下が成り立つ。

$$\pi: R/\langle fgh \rangle \to R/\langle f \rangle \oplus R/\langle g \rangle \oplus R/\langle h \rangle$$
$$[x] \mapsto ([x], [x], [x])$$

は加群の同型写像であり、

$$\pi^{-1}([x], [y], [z]) = [aghx + bfhy + cfgz]$$
 である。

$$\phi: R/\langle fgh \rangle \to R/\langle f \rangle \oplus R/\langle g \rangle \oplus R/\langle h \rangle$$
$$[x] \mapsto ([ax], [bx], [cx])$$

は加群の同型写像であり、 $\phi^{-1}([x], [y], [z]) = ([ghx + fhy + fgz])$ である。

【証明】

①
$$\pi$$
, π^{-1} の well-definedness は明らか。 $\pi^{-1} \circ \pi([x]) = \pi^{-1}([x], [x], [x]) = [aghx + bfhx + cfgx] = [(agh + bfh + cfg)x] = [x]。$

 $\pi \circ \pi^{-1}([x], [y], [z]) = \pi([aghx + bfhy + cfgz]) = ([aghx + bfhy + cfgz], [aghx + bfhy + cfgz], [aghx + bfhy + cfgz], [aghx + bfhy + cfgz]) = ([(agh + bfh + cfg)x], [(agh + bfh + cfg)x]) = ([x], [y], [z])_{0}$

$$bfhy + cfgz$$
]) = ([($agh + bfh + cfg$) x], [($agh + bfh + cfg$) y], [($agh + bfh + cfg$) z]) = ([x], [y], [z])。

② ϕ , ϕ^{-1} \mathcal{O} well-definedness は明らか。
 $\phi^{-1} \circ \phi([x]) = \phi^{-1}([ax], [bx], [cx]) = [ghax + fhbx + fgcx] = [(agh + bfh + cfg)x] = [x]$ 。
 $\phi \circ \phi^{-1}([x], [y], [z]) = \phi([ghx + fhy + fgz]) = ([a(ghx + fhy + fgz)], [b(ghx + fhy + fgz)]$

[fhy + fgz] = ([(agh + bfh + cfg)x], [(agh + bfh +

(cfg)y, $[(agh + bfh + cfg)z]) = ([x], [y], [z])_0$

【問】17 で割った余りが 13、5 で割った余りが 4、8 で割った余りが 1 である整数を求めなさい。

【答】拡張されたユークリッドの互除法で、

 $7 \cdot 5 + (-2) \cdot 17 = 1$

 $32 \cdot 8 + (-3) \cdot 5 \cdot 17 = 1$ を得る。よって、

32·7·5·8 + 32·(-2)·17·8 + (-3)·5·17 = 1 すなわち、

 $224 \cdot 5 \cdot 8 + (-64) \cdot 17 \cdot 8 + (-3) \cdot 5 \cdot 17 = 1$ を得る。

定理 113 より 17 で割った余りが x、5 で割った余りが y、8 で割った余りが z である自然数として、

$$n = 224 \cdot 5 \cdot 8 \cdot x + (-64) \cdot 17 \cdot 8 \cdot y + (-3) \cdot 5 \cdot 17 \cdot z$$

が取れる。ここでは、 $n = 224 \cdot 5 \cdot 8 \cdot 13 + (-64) \cdot 17 \cdot 8 \cdot 4 + (-3) \cdot 5 \cdot 17 \cdot 1 = 81409$ 。 答えは、remainder(81409, 17 · 5 · 8) = 489。

逆数・分母の有理化

例 22

$$\mathbb{Q}[x]/\langle x^2 - 2 \rangle$$
 で $x^2 + x + 1$ の逆数を求める。
拡張されたユークリッドの互除法より、
 $(x-2)(x^2-2) + (-x+3)(x^2+x+1) = 7$. よって、
 $[x^2+x+1]^{-1} = \frac{1}{7}[-x+3]$ 。
このことから、 $\frac{1}{\sqrt{2^2+\sqrt{2}+1}} = \frac{1}{7}(-\sqrt{2}+3)$.

微分方程式の解法

例 23

微分方程式 $y'' - y' - y = x^2$ の特殊解を求める。 $D = \frac{d}{dx}$ と置く。 $D^2 - D - 1$ と D^3 について、拡張されたユークリッドの互除法により、

$$(-2D^2 + D - 1)(D^2 - D - 1) + (2D - 3)D^3 = 1.$$

よってこれを x^2 に左から作用させると、

$$(-2D^2 + D - 1)(D^2 - D - 1)x^2 + (2D - 3)D^3x^2 = x^2.$$

よって、

$$(D^2 - D - 1)(-2D^2 + D - 1)x^2 = x^2$$
.

すなわち、 $y = (-2D^2 + D - 1)x^2 = -4 + 2x - x^2$ とおけば、

$$(D^2 - D - 1)y = y'' - y' - y = x^2.$$

〔練習問題〕 $y'' - y' - y = \sin x$. (ヒント: $(D-2)(D^2 - D - 1) + (-D + 3)(D^2 + 1) = 5$.)