Hi, "Phil Tomson" <ptkwt / shell1.aracnet.com> wrote in message news:b0ivi80pgg / enews3.newsguy.com... > In article <b0idhk0gj3 / enews4.newsguy.com>, > > > >A couple of questions: > >1) how good is Ruby's rand function (what's the quality of randomness)? I > >suspec that it is just the same as C's rand, so there won't be a > >difference. > >2) I'd like to plug in my own random number generator that would probably > >produce higher-quality random numbers than the current rand does. I'm > >pretty sure it should be doable and easy, like: > > > >module Kernel > > def rand(max=0) > > #do random number generation magic here > > end > >end > > > > > Here's what I did. At Robert Feldt's suggestion I used his RandomR > package which uses the Mersenne Twister to generate random numbers (a much > better method than whatever is built-in, I'm sure). I then redefined rand > and srand like so: > > require 'random/mersenne_twister' > module Kernel > def rand(max=0) > if not defined? @__random > @__rng=Random::MersenneTwister.new Time.now.to_i > end > @__rng.rand(max) > end > def srand(seed) > @__rng=Random::MersenneTwister.new seed > end > end > How about use native Ruby code instead of extension module? The following is my rough translation from C code(mt19937ar.c) at http://www.math.keio.ac.jp/~matumoto/emt.html ================================================================= # Period parameters N = 624 M = 397 MATRIX_A = 0x9908b0df # constant vector a UPPER_MASK = 0x80000000 # most significant w-r bits LOWER_MASK = 0x7fffffff # least significant r bits # static unsigned long mt[N]; # the array for the state vector # static int mti=N+1; # mti==N+1 means mt[N] is not initialized $mt = Array.new(N) $mti = N+1 # initializes mt[N] with a seed def init_genrand(s) $mt[0]= s & 0xffffffff for $mti in 1...N $mt[$mti] = (1812433253 * ($mt[$mti-1] ^ ($mt[$mti-1] >> 30)) + $mti) # See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. # In the previous versions, MSBs of the seed affect # only MSBs of the array mt[]. # 2002/01/09 modified by Makoto Matsumoto $mt[$mti] &= 0xffffffff # for >32 bit machines end $mti = N end # initialize by an array with array-length # init_key is the array for initializing keys # key_length is its length def init_by_array(init_key, key_length) init_genrand(19650218) i=1 j=0 k = (N>key_length ? N : key_length) k.downto(1) { $mt[i] = ($mt[i] ^ (($mt[i-1] ^ ($mt[i-1] >> 30)) * 1664525)) + init_key[j] + j # non linear $mt[i] &= 0xffffffff # for WORDSIZE > 32 machines i+=1 j+=1 if (i>=N) $mt[0] = $mt[N-1] i=1 end if (j>=key_length) j=0 end } (N-1).downto(1) { $mt[i] = ($mt[i] ^ (($mt[i-1] ^ ($mt[i-1] >> 30)) * 1566083941)) - i # non linear $mt[i] &= 0xffffffff # for WORDSIZE > 32 machines i+=1 if (i>=N) $mt[0] = $mt[N-1] i=1 end } $mt[0] = 0x80000000 # MSB is 1; assuring non-zero initial array end # generates a random number on [0,0xffffffff]-interval def genrand_int32() mag01=[0x0, MATRIX_A] # mag01[x] = x * MATRIX_A for x=0,1 if ($mti >= N) # generate N words at one time if ($mti == N+1) # if if init_genrand() has not been called, init_genrand(5489) # a default initial seed is used end for kk in 0...N-M y = ($mt[kk]&UPPER_MASK)|($mt[kk+1]&LOWER_MASK) $mt[kk] = $mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1] end for kk in (N-M) ... (N-1) y = ($mt[kk]&UPPER_MASK)|($mt[kk+1]&LOWER_MASK) $mt[kk] = $mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1] end y = ($mt[N-1]&UPPER_MASK)|($mt[0]&LOWER_MASK) $mt[N-1] = $mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1] $mti = 0 end y = $mt[$mti] $mti+=1 y ^= (y >> 11) y ^= (y << 7) & 0x9d2c5680 y ^= (y << 15) & 0xefc60000 y ^= (y >> 18) return y end # generates a random number on [0,0x7fffffff]-interval def genrand_int31() return (genrand_int32()>>1) end # generates a random number on [0,1]-real-interval def genrand_real1(void) return genrand_int32()*(1.0/4294967295.0) # divided by 2^32-1 end # generates a random number on [0,1)-real-interval def genrand_real2() return genrand_int32()*(1.0/4294967296.0) # divided by 2^32 end # generates a random number on (0,1)-real-interval def genrand_real3() return (genrand_int32() + 0.5)*(1.0/4294967296.0) # divided by 2^32 end # generates a random number on [0,1) with 53-bit resolution def genrand_res53() a=genrand_int32()>>5 b=genrand_int32()>>6 return (a*67108864.0+b)*(1.0/9007199254740992.0) end init=[0x123, 0x234, 0x345, 0x456] length=4 init_by_array(init, length) printf("1000 outputs of genrand_int32()\n") for i in 0...1000 printf("%10u ", genrand_int32()) if (i%5==4) printf("\n") end end printf("\n1000 outputs of genrand_real2()\n") for i in 0 ...1000 printf("%10.8f ", genrand_real2()) if (i%5==4) printf("\n") end end ===================================================== Park Heesob