永井@知能.九工大です.

以前,[ruby-list:40868] で

From: Hidetoshi NAGAI <nagai / ai.kyutech.ac.jp>
Subject: [ruby-list:40868] [RFC] framework of Ruby/Tk + VNC
Date: Fri, 10 Jun 2005 12:43:24 +0900
Message-ID: <20050610.124317.74740969.nagai / ai.kyutech.ac.jp>
> Ruby/Tk で作成した GUI アプリケーションを外部に公開するために,
> VNC と組み合わせた枠組みを考えています.

というものを流しました.
一般のウィンドウマネージャを動かさず,VNC サーバ以外には
Ruby/Tk のプロセスひとつだけとすることで,セキュリティ上の
リスクと必要リソース量を低減するようにしています.
また,Windows がサーバとなる場合でも,ひとつの窓だけを公開する
機能を持つ VNC サーバを使うことで,複数のマルチウィンドウアプリ
ケーションを同時に公開することが可能となります.

今回,少しだけ作業を進めて,インタラクティブ性をテストできるような
デモを追加しましたので,コメント等ご意見をいただけますと幸いです.

# ウィンドウの拡大・縮小などのインプリメントはまだです.

今回のテストスクリプトでは,外部の Ruby/Tk スクリプトを読み込んで
実行するものにしています.

外部の Ruby/Tk スクリプトには,前回のテストスクリプト中に
埋め込んでいた内容を別ファイルに抜き出したものと,
インタラクティブ性のテスト用の pendulum.rb というものの二つを用意し,
いずれかを選んで実行できるようにしています.
インタラクティブ性のテスト用の pendulum.rb は,Ruby/Tk ウィジェット
デモ中のアニメーションデモから拝借してちょっと手を加えたものです.

今回のデモのポイントは,ネット公開用マルチウィンドウアプリケーション
開発がシームレスに行えるという点です.
試していただけるとわかりますが,外部の Ruby/Tk スクリプトは,
そのままローカルで実行可能なものになっています.
つまり,ローカルのウィンドウシステムの上で開発した Ruby/Tk アプリ
ケーションのソースをほぼそのままに公開にまわすことができるわけです.

# この仕組みは,開発環境の構築にも使うことができるでしょう.

ネットワークの速度が早くなった昨今だからこその話ではありますが,
Ajax のようにサーバ側とクライアント側の両方でスクリプトを作成したり,
ローカル用と公開用とで異なるプログラミングをしたりする必要もなく,
また,クライアントが持つ機能を心配したり制約を受けたりすることもなく,
さらに,送られてきたスクリプトをローカルで動かすことによる
セキュリティリスクを我慢したりすることもなく,
ちょっとした GUI 付きツールをインタラクティブ性を維持して簡単に
外部公開 (アクセス制約の有無は自由) できるとなれば,
結構役に立つのではないかと思ってます.

実験サーバは http://131.206.154.81/ です.
クライアントには Ruby は必要ありませんが,ブラウザでの利用の場合は
Java 版 VNC viewer が送られてきますので,Java applet が実行可能
になっていなければなりません.

# ブラウザを使った場合には最初にパスワードが要求されますが,
# そこでは何も入力せずに OK ボタンを押してかまいません.

また,VNC viewer が 131.206.154.81 の 5933 番ポートに接続しますので,
firewall がこのポートへのアクセスを通す必要もあります.
もちろん,他の VNC viewer を使うこともできます.
その場合も 131.206.154.81 の 5933 番ポートに接続してください.

ご意見,コメント,開発への参加希望(^_^)等ありましたら,
ぜひお寄せ頂けますようお願い致します.

                                       永井 秀利 (九工大 知能情報)
                                           nagai / ai.kyutech.ac.jp
---------------------------------------------------------------
以下がテストスクリプトです.
3本ともに同じディレクトリに置かれているという前提になっています.

=======< wrap-test-main2.rb >=========================================
#!/usr/bin/env ruby

require 'multi-tk'
require 'tk/canvas'

class Window_Frame < TkcWindow
  def _title_bind
    @titlebar.bind('ButtonPress-1', 
                   proc{|rx, ry| 
                     @rx = rx; @ry = ry; @sx, @sy = self.coords
                     @base.raise
                   }, '%X', '%Y')

    @titlebar.bind('B1-Motion', 
                   proc{|rx, ry|
                     wx = @wall.winfo_rootx; wy = @wall.winfo_rooty
                     if rx > wx && rx < wx + @wall.width &&
                         ry > wy && ry < wy + @wall.height
                       self.coords = [@sx + (rx - @rx), @sy + (ry - @ry)]
                     end
                   }, '%X', '%Y')
  end

  def initialize(wall, title, *args)
    @wall = wall
    @base = TkFrame.new(@wall, :borderwidth=>3, :relief=>:ridge)
    @titlebar = TkLabel.new(@base, :text=>" #{title} ", :relief=>:raised, 
                            :foreground=>'white', 
                            :background=>'midnight blue').pack(:fill=>:x)
    @container = TkFrame.new(@base, :container=>true).pack(:fill=>:both, 
                                                           :expand=>true)
    @container.bind('Destroy'){self.destroy}

    super(wall, *args)
    self.window = @base
    _title_bind
  end

  def winid
    @container.winfo_id
  end
end

def new_toplevel(wall, ip, top)
  w = Window_Frame.new(wall, "toplevel(#{top})", 200, 150, :anchor=>:nw)
  MultiTkIp.invoke_hidden(ip, 'toplevel', top, '-use', w.winid)
end

class TOPLEVEL_ARG < Exception
  def self.new(path, *args)
    obj = super(path)
    obj.instance_variable_set('@args', args)
    obj
  end
  alias value message
  attr_reader :args
end

def replace_toplevel_cmd(wall, slave_ip)
  th = Thread.new(wall, slave_ip){|w, ip|
    begin
      Thread.stop
    rescue TOPLEVEL_ARG => arg
      begin
        new_toplevel(w, ip, arg.value, *(arg.args))
      rescue Exception => e
        p e
      end
      retry
    end
  }

  cmd = TkComm._get_eval_string(proc{|t, *args|
                                  th.raise(TOPLEVEL_ARG.new(t, *args))
                                  until slave_ip.eval_proc{TkWinfo.exist?(t)}
                                    Thread.pass
                                    Tk.update
                                  end
                                })

  MultiTkIp.hide_cmd(slave_ip, 'toplevel') unless slave_ip.safe?
  slave_ip._eval("proc toplevel {path args} {eval \"#{cmd} $path $args\"}")
  slave_ip._eval("proc wm {args} {}")
end


##############################################

timeout = 60

wall = TkCanvas.new(:background=>'skyblue').pack
#wall = TkCanvas.new(:width=>500, :height=>400, :background=>'skyblue').pack
#wall = TkCanvas.new(:width=>800, :height=>600, :background=>'skyblue').pack

wall.xscrollbar(h_scroll = TkScrollbar.new(:width=>10))
wall.yscrollbar(v_scroll = TkScrollbar.new(:width=>10))

TkGrid.rowconfigure(Tk.root, 0, 'weight'=>1, 'minsize'=>0)
TkGrid.columnconfigure(Tk.root, 0, 'weight'=>1, 'minsize'=>0)

wall.grid(:row=>0, :column=>0, :sticky=>'news')
h_scroll.grid(:row=>1, :column=>0, 'sticky'=>'ew')
v_scroll.grid(:row=>0, :column=>1, 'sticky'=>'ns')

TkcText.new(wall, 150, 50, :fill=>'navyblue', :font=>'courier -14', 
            :text=>"Ruby/Tk+VNC :: concept example")

TkcText.new(wall, 150, 300, 
            :text=>"This example will exit in #{timeout} seconds.")
TkcText.new(wall, 350, 340, 
            :text=>"This is Master IP's canvas widget.\n\t($SAFE==#{$SAFE})")

Tk.update
Tk.root.geometry('500x380')

Tk.after(timeout * 1000){exit}
ev_thread = Thread.new{Tk.mainloop}

#=========================================================#

demos = [
  ['wrap-test-target.rb', 'Simple Demo: create a new toplevel'], 
  ['pendulum.rb',         'Test of interactivity (Animation demo)'], 
]

v = TkVariable.new('')

sel_frame = TkFrame.new(wall, :relief=>:flat, :borderwidth=>3)

TkLabel.new(sel_frame, 
            :text=>'Please select the demo which you want to try.', 
            :foreground=>'red').pack(:padx=>10, :pady=>5)

demos.each{|file, label|
  TkButton.new(sel_frame, :text=>label, #:anchor=>:w, 
               :command=>proc{
                 v.value = file
                 sel_frame.destroy
               }).pack(:fill=>:x)
}

TkcWindow.new(wall, 40, 100, :anchor=>:nw, :window=>sel_frame)

Tk.update
sel_frame.wait
#p v.value
exit if v.value.empty?

dirname = File.dirname(File.expand_path(__FILE__))
#target_file = ARGV.shift.dup
#target_file = File.expand_path(ARGV.shift.dup)
target_file = File.join(dirname, v.value)

#=========================================================#

wall.scrollregion = [0, 0, 1024, 768]

TkcText.new(wall, 370, 170, :text=><<EOT)
The root window of the safeTk IP is 
embedded in Master IP's frame widget.

You can move the root window by 
'Button-1 + Motion' on the titlebar.
Master IP works like as a window manager.

No window manager on the VNC server.
Running one Ruby/Tk process only.
EOT
#'

w = Window_Frame.new(wall, 'slave root', 50, 70, :anchor=>:nw)
w.instance_variable_get(:@container).bind_append('Destroy'){Tk.exit}

#ip = MultiTkIp.new_trusted_slave(:use=>w.winid)
#ip = MultiTkIp.new_trusted_slave(3, :use=>w.winid)
#ip = MultiTkIp.new_trusted_slave(4, :use=>w.winid)
#ip = MultiTkIp.new_safeTk(0, :use=>w.winid)
#ip = MultiTkIp.new_safeTk(3, :use=>w.winid)
ip = MultiTkIp.new_safeTk(:use=>w.winid)

replace_toplevel_cmd(wall, ip)

#p ['on main', __FILE__]

#=========================================================#
target_file.untaint

#ldr = proc{|f| $SAFE=ip.safe_level; load f,false}
xp = proc{|val| p val}

alias __require__ require
@req = proc{|f| 
  # p ['@req', f]
  __require__(f)}

def require(f)
  @req.call(f)
end

#xp.call '-------------------'
ip.bg_eval_proc{
#  xp.call self

  begin
#    xp.call target_file
    #ldr.call target_file
    load target_file, true
  rescue => e
    xp.call e if $DEBUG
  end
}
#xp.call '-------------------'

=begin
Tk.after(5000){
  w.instance_variable_get(:@container).configure(:width=>450, :height=>250)
}
Tk.after(10000){
  w.instance_variable_get(:@container).configure(:width=>500, :height=>600)
}
=end

#p 'join'
ev_thread.join
======================================================================

=======< wrap-test-target.rb >========================================
require 'tk'

p ['on target', __FILE__] if $SAFE < 4

TkLabel.new(:text=>"safeTk interpreter's root").pack(:padx=>10, :pady=>5)

top = nil
cnt = 0

b1 = TkButton.new(:text=>'create Toplevel')

b2 = TkButton.new(:text=>'add label to the toplevel', :state=>:disabled, 
                  :command=>proc{
                    cnt += 1
                    TkLabel.new(top, 
                                :text=>"Pressed(#{cnt})!! $SAFE=#{$SAFE}"
                                ).pack
                  })

b1[:command] = proc{
  top = TkToplevel.new
  b1[:state] = :disabled
  b2[:state] = :active
  TkLabel.new(top, 
              :text=>'New toplevel of slaveIP').pack(:padx=>20, :pady=>30)
}

label = TkLabel.new(:foreground=>'red', :text=>"\n")
timer = TkTimer.new(500, 1, proc{label.text = "\n"})
TkButton.new(:text=>'BUTTON', 
             :command=>proc{
               timer.cancel
               label.text = "button is pressed!!\n($SAFE==#{$SAFE})"
               timer.start
             }).pack(:padx=>5, :pady=>5, :fill=>:x)
label.pack

Tk.pack(b1, b2, :fill=>:x, :padx=>5, :pady=>5)

Tk.mainloop
======================================================================

=======< pendulum.rb >================================================
#!/usr/bin/env ruby
#
# based on Tcl/Tk8.5a2 widget demos
#
require 'tk'

#TkRoot.new(:title=>'Pendulum Animation Demonstration', 
#           :iconname=>"pendulum")

# create label
msg = TkLabel.new {
  font 'Helvetica -12'
  wraplength '4i'
  justify 'left'
  text 'This demonstration shows how Ruby/Tk can be used to carry out animations that are linked to simulations of physical systems. In the left canvas is a graphical representation of the physical system itself, a simple pendulum, and in the right canvas is a graph of the phase space of the system, which is a plot of the angle (relative to the vertical) against the angular velocity. The pendulum bob may be repositioned by clicking and dragging anywhere on the left canvas.'
}
msg.pack('side'=>'top')

# animated wave
class PendulumAnimationDemo
  def initialize(frame)
    TkFrame.new(frame) {|f|
      TkButton.new(f, :command=>proc{Tk.root.destroy}, 
                   :text=>'Dismiss').pack(:side=>:left, :expand=>true)
    }.pack(:side=>:bottom, :fill=>:x, :pady=>'2m')

    # Create some structural widgets
    pane = TkPanedWindow.new(frame #, :width=>350, :height=>200
                             ).pack(:fill=>:both, :expand=>true)
    @lf1 = TkLabelFrame.new(pane, :text=>'Pendulum Simulation')
    @lf2 = TkLabelFrame.new(pane, :text=>'Phase Space')

    # Create the canvas containing the graphical representation of the
    # simulated system.
    @c = TkCanvas.new(@lf1, :width=>320, :height=>200, :background=>'white', 
                      :borderwidth=>2, :relief=>:sunken)
    TkcText.new(@c, 5, 5, :anchor=>:nw, 
                :text=>'Click to Adjust Bob Start Position')
    # Coordinates of these items don't matter; they will be set properly below
    @plate = TkcLine.new(@c, 0, 25, 320, 25, :width=>2, :fill=>'grey50')
    @rod = TkcLine.new(@c, 1, 1, 1, 1, :width=>3, :fill=>'black')
    @bob = TkcOval.new(@c, 1, 1, 2, 2, 
                       :width=>3, :fill=>'yellow', :outline=>'black')
    TkcOval.new(@c, 155, 20, 165, 30, :fill=>'grey50', :outline=>'')

    # pack
    @c.pack(:fill=>:both, :expand=>true)

    # Create the canvas containing the phase space graph; this consists of
    # a line that gets gradually paler as it ages, which is an extremely
    # effective visual trick.
    @k = TkCanvas.new(@lf2, :width=>320, :height=>200, :background=>'white', 
                      :borderwidth=>2, :relief=>:sunken)
    @y_axis = TkcLine.new(@k, 160, 200, 160, 0, :fill=>'grey75', :arrow=>:last)
    @x_axis = TkcLine.new(@k, 0, 100, 320, 100, :fill=>'grey75', :arrow=>:last)

    @graph = {}
    90.step(0, -10){|i|
      # Coordinates of these items don't matter; 
      # they will be set properly below
      @graph[i] = TkcLine.new(@k, 0, 0, 1, 1, :smooth=>true, :fill=>"grey#{i}")
    }

    # labels
    @label_theta = TkcText.new(@k, 0, 0, :anchor=>:ne, 
                               :text=>'q', :font=>'Symbol 8')
    @label_dtheta = TkcText.new(@k, 0, 0, :anchor=>:ne, 
                               :text=>'dq', :font=>'Symbol 8')

    # pack
    @k.pack(:fill=>:both, :expand=>true)

    # Initialize some variables
    @points = []
    @theta = 45.0
    @dTheta = 0.0
    @length = 150

    # init display
    showPendulum

    # animation loop
    @timer = TkTimer.new(15){ repeat }

    # binding
    @c.bindtags_unshift(btag = TkBindTag.new)
    btag.bind('Destroy'){ @timer.stop }
    btag.bind('1', proc{|x, y| @timer.stop; showPendulum(x, y)}, '%x %y')
    btag.bind('B1-Motion', proc{|x, y| showPendulum(x, y)}, '%x %y')
    btag.bind('ButtonRelease-1', 
              proc{|x, y| showPendulum(x, y); @timer.start }, '%x %y')

    btag.bind('Configure', proc{|w| @plate.coords(0, 25, w, 25)}, '%w')

    @k.bind('Configure', proc{|h, w| 
              @psh = h/2; 
              @psw = w/2
              @x_axis.coords(2, @psh, w-2, @psh)
              @y_axis.coords(@psw, h-2, @psw, 2)
              @label_theta.coords(@psw-4, 6)
              @label_dtheta.coords(w-6, @psh+4)
            }, '%h %w')

    # add to pane
    Tk.update
    pane.add(@lf1, @lf2)  # must be called after setting 'Configure' binding

    # animation start
    @timer.start(500)
  end

  # This procedure makes the pendulum appear at the correct place on the
  # canvas. If the additional arguments x, y are passed instead of computing 
  # the position of the pendulum from the length of the pendulum rod and its 
  # angle, the length and angle are computed in reverse from the given 
  # location (which is taken to be the centre of the pendulum bob.)
  def showPendulum(x=nil, y=nil)
    if x && y && (x != 160 || y != 25)
      @dTheta = 0.0
      x2 = x - 160
      y2 = y - 25
      @length = Math.hypot(x2, y2)
      @theta = Math.atan2(x2,y2)*180/Math::PI
    else
      angle = @theta*Math::PI/180
      x = 160 + @length*Math.sin(angle)
      y = 25 + @length*Math.cos(angle)
    end

    @rod.coords(160, 25, x, y)
    @bob.coords(x-15, y-15, x+15, y+15)
  end

  # Update the phase-space graph according to the current angle and the
  # rate at which the angle is changing (the first derivative with
  # respect to time.)
  def showPhase
    @points << @theta + @psw << -20*@dTheta + @psh
    if @points.length > 100
      @points = @points[-100..-1]
    end
    (0...100).step(10){|i|
      first = - i
      last = 11 - i
      last = -1 if last >= 0
      next if first > last
      lst = @points[first..last]
      @graph[i].coords(lst) if lst && lst.length >= 4
    }
  end

  # This procedure is the "business" part of the simulation that does
  # simple numerical integration of the formula for a simple rotational
  # pendulum.
  def recomputeAngle
    scaling = 3000.0/@length/@length

    # To estimate the integration accurately, we really need to
    # compute the end-point of our time-step.  But to do *that*, we
    # need to estimate the integration accurately!  So we try this
    # technique, which is inaccurate, but better than doing it in a
    # single step.  What we really want is bound up in the
    # differential equation:
    #       ..             - sin theta
    #      theta + theta = -----------
    #                         length
    # But my math skills are not good enough to solve this!

    # first estimate
    firstDDTheta = -Math.sin(@theta * Math::PI/180) * scaling
    midDTheta = @dTheta + firstDDTheta
    midTheta = @theta + (@dTheta + midDTheta)/2
    # second estimate
    midDDTheta = -Math.sin(midTheta * Math::PI/180) * scaling
    midDTheta = @dTheta + (firstDDTheta + midDDTheta)/2
    midTheta = @theta + (@dTheta + midDTheta)/2
    # Now we do a double-estimate approach for getting the final value
    # first estimate
    midDDTheta = -Math.sin(midTheta * Math::PI/180) * scaling
    lastDTheta = midDTheta + midDDTheta
    lastTheta = midTheta + (midDTheta+ lastDTheta)/2
    # second estimate
    lastDDTheta = -Math.sin(lastTheta * Math::PI/180) * scaling
    lastDTheta = midDTheta + (midDDTheta + lastDDTheta)/2
    lastTheta = midTheta + (midDTheta + lastDTheta)/2
    # Now put the values back in our globals
    @dTheta = lastDTheta
    @theta = lastTheta
  end

  # This method ties together the simulation engine and the graphical
  # display code that visualizes it.
  def repeat
    # Simulate
    recomputeAngle

    # Update the display
    showPendulum
    showPhase
  end
end

# Start the animation processing
PendulumAnimationDemo.new(Tk.root)

Tk.mainloop
======================================================================